All-solid-state sodium-ion batteries that operate at room temperature are attractive candidates for use in large-scale energy storage systems. However, materials innovation in solid electrolytes is imperative to fulfill multiple requirements, including high conductivity, functional synthesis protocols for achieving intimate ionic contact with active materials, and air stability. A new, highly conductive (1.1 mS cm(-1) at 25 °C, Ea =0.20 eV) and dry air stable sodium superionic conductor, tetragonal Na3 SbS4 , is described. Importantly, Na3 SbS4 can be prepared by scalable solution processes using methanol or water, and it exhibits high conductivities of 0.1-0.3 mS cm(-1) . The solution-processed, highly conductive solidified Na3 SbS4 electrolyte coated on an active material (NaCrO2 ) demonstrates dramatically improved electrochemical performance in all-solid-state batteries.
The crystal structures and electrochemical properties of ZnxMo6S8 Chevrel phases (x = 1, 2) prepared via electrochemical Zn(2+)-ion intercalation into the Mo6S8 host material, in an aqueous electrolyte, were characterized. Mo6S8 [trigonal, R3̅, a = 9.1910(6) Å, c = 10.8785(10) Å, Z = 3] was first prepared via the chemical extraction of Cu ions from Cu2Mo6S8, which was synthesized via a solid-state reaction for 24 h at 1000 °C. The electrochemical zinc-ion insertion into Mo6S8 occurred stepwise, and two separate potential regions were depicted in the cyclic voltammogram (CV) and galvanostatic profile. ZnMo6S8 first formed from Mo6S8 in the higher-voltage region around 0.45-0.50 V in the CV, through a pseudo two-phase reaction. The inserted zinc ions occupied the interstitial sites in cavities surrounded by sulfur atoms (Zn1 sites). A significant number of the inserted zinc ions were trapped in these Zn1 sites, giving rise to the first-cycle irreversible capacity of ∼46 mAh g(-1) out of the discharge capacity of 134 mAh g(-1) at a rate of 0.05 C. In the lower-voltage region, further insertion occurred to form Zn2Mo6S8 at around 0.35 V in the CV, also involving a two-phase reaction. The electrochemical insertion and extraction into the Zn2 sites appeared to be relatively reversible and fast. The crystal structures of Mo6S8, ZnMo6S8, and Zn2Mo6S8 were refined using X-ray Rietveld refinement techniques, while the new structure of Zn2Mo6S8 was determined for the first time in this study using the technique of structure determination from powder X-ray diffraction data. With the zinc ions inserted into Mo6S8 forming Zn2Mo6S8, the cell volume and a parameter increased by 5.3% and 5.9%, respectively, but the c parameter decreased by 6.0%. The average Mo-Mo distance in the Mo6 cluster decreased from 2.81 to 2.62 Å.
The recent discovery of reversible plating and alloying of calcium
has invoked considerable interest in calcium-based rechargeable batteries
toward overcoming the limitations of conventional Li-ion batteries.
However, only a few cathode materials have been tested thus far, and
these exhibit low energy-storage capability and poor cyclability.
Herein, the highly reversible Ca-intercalation capability of NASICON-type
NaV2(PO4)3 makes it a potential cathode
material for nonaqueous Ca-ion batteries, with high capacity and voltage
and good cyclability (90 mA h g–1 and ∼3.4
V at 11.7 mA g–1 and 75 °C; 70 mA h g–1 and ∼3.2 V at 5.85 mA g–1 and 25 °C).
Although this work shows only the capability of the cathode, not a
full-cell performance, it does demonstrate experimentally that a poly-oxyanionic
material can provide an outstanding host structure for Ca diffusion
at room temperature with high energy-storage capability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.