The volume of academic literature, such as academic conference papers and journals, has increased rapidly worldwide, and research on metadata extraction is ongoing. However, high-performing metadata extraction is still challenging due to diverse layout formats according to journal publishers. To accommodate the diversity of the layouts of academic journals, we propose a novel LAyout-aware Metadata Extraction (LAME) framework equipped with the three characteristics (e.g., design of automatic layout analysis, construction of a large meta-data training set, and implementation of metadata extractor). In the framework, we designed an automatic layout analysis using PDFMiner. Based on the layout analysis, a large volume of metadata-separated training data, including the title, abstract, author name, author affiliated organization, and keywords, were automatically extracted. Moreover, we constructed a pre-trained model, Layout-MetaBERT, to extract the metadata from academic journals with varying layout formats. The experimental results with our metadata extractor exhibited robust performance (Macro-F1, 93.27%) in metadata extraction for unseen journals with different layout formats.
New scientific and technological (S&T) knowledge is being introduced rapidly, and hence, analysis efforts to understand and analyze new published S&T documents are increasing daily. Automated text mining and vision recognition techniques alleviate the burden somewhat, but the various document layout formats and knowledge content granularities across the S&T field make it challenging. Therefore, this paper proposes LA-SEE (LAME and Vi-SEE), a knowledge graph construction framework that simultaneously extracts meta-information and useful image objects from S&T documents in various layout formats. We adopt Layout-aware Metadata Extraction (LAME), which can accurately extract metadata from various layout formats, and implement a transformer-based instance segmentation (i.e., Vision based Semantic Elements Extraction (Vi-SEE)) to maximize the vision-based semantic element recognition. Moreover, to constructing a scientific knowledge graph consisting of multiple S&T documents, we newly defined an extensible Semantic Elements Knowledge Graph (SEKG) structure. For now, we succeeded in extracting about 6 million semantic elements from 49,649 PDFs. In addition, to illustrate the potential power of our SEKG, we provide two promising application scenarios, such as a scientific knowledge guide across multiple S&T documents and questions and answering over scientific tables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.