The development of two dominant research traditions is described: students' approaches to learning (SAL) and information processing (IP). The development of the third tradition, self-regulated learning (SRL) is added. SAL is based on European research, whereas IP and SRL are more typical background ideas for North-American research. The most central conceptual frameworks behind these traditions are analyzed. These frameworks form the foundations for the most common inventories used in higher education to measure university students' learning and studying. A larger multilayered perspective is then outlined with three levels of context: general, coursespecific, and situational. The other contributions to this Special issue are discussed in relation to this larger picture.
High-resolution digital elevation models of Finland and Sweden based on LiDAR (Light Detection and Ranging) reveal subglacial landforms in great detail. We describe the ice-sheet scale distribution and morphometric characteristics of a glacial landform that is distinctive in morphology and occurs commonly in the central parts of the former Scandinavian Ice Sheet, especially up-ice of the Younger Dryas end moraine zone. We refer to these triangular or V-shaped landforms as murtoos (singular, ‘murtoo’). Murtoos are typically 30–200 m in length and 30–200 m in width with a relief of commonly <5 m. Murtoos have straight and steep edges, a triangular tip oriented parallel to ice-flow direction, and an asymmetric longitudinal profile with a shorter, but steeper down-ice slope. The spatial distribution of murtoos and their geomorphic relation to other landforms indicate that they formed subglacially during times of climate warming and rapid retreat of the Scandinavian Ice Sheet when large amounts of meltwater were delivered to the bed. Murtoos are formed under warm-based ice and may be associated with a non-channelized subglacial hydraulic system that evacuated large discharges of subglacial water.
Evidence of conspicuous repeated seasonal to annual deposition of glaciofluvial and glaciolacustrine sequences within a structurally complex interlobate esker segment in SW Finland is presented. The time‐transgressive, overlapping depositional sequences consist of deposits from two successive melt seasons, including three vertically stacked lithofacies associations: (1) massive to stratified coarse gravels = summer deposits; (2) trough and ripple cross‐stratified fine‐grained deposits = autumn to winter deposits; and (3) sandy stratified beds = spring deposits. The depositional environment of each lithofacies association involves a transition from subglacial or submarginal tunnel to a subaqueous re‐entrant environment, which then passes to a proglacial glaciolacustrine environment. The study also presents evidence of headward extension of subglacial tunnel deposits, related to the rapid shifting of a tunnel expansion point during the increasing spring discharge, which occupied the old tunnel exit: this mode of annual deposition has not been reported previously in esker studies. The good preservation of the rhythmic lithofacies associations is suggested as resulting from interlobate depositional conditions associated with rapidly decaying icestreams. Therefore, the depositional model may provide a key to recognizing time‐transgressive interlobate eskers that form an important geomorphological and sedimentological record of meltwater activity during the last deglaciation of the Fennoscandian and Laurentide ice sheets. The identification of time‐transgressive interlobate eskers and associated palaeo‐icestream behaviour is an essential step forward for more accurate models of ice sheet behaviour and palaeoclimatic reconstructions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.