Series of polyelectrolyte−surfactant complexes, DNA−cationic surfactant complexes (cetyltrimethylammonium, cetylpyridinium, and cetylbenzyldimethylammonium), and their self-assembled bulk film materials were prepared on a large scale. Circular dichroism (CD) analysis indicated that the right-handed double helix structure of DNA was retained in these bulk film materials. TGA analysis suggested that 4 molecules of water were required to retain the B-type conformation of the DNA helix in the self-assembled bulk film materials. In addition, it revealed that DNA and the DNA−surfactant complex film materials were thermostable up to as high as 180 °C. Thermodynamical analysis indicated that these film materials were thermo-extensive over a temperature range from 100 to 148 °C. The DNA conformation in the supramolecular complex films can be reversibly tuned by changing the environmental humidity. Film formation was found to occur by self-assembly and self-organization with evaporation of solvent molecules. Various functional dyes such as laser dye, NLO dye, and photochromic dye could easily be incorporated in the self-assembled supramolecular complex films as adducts. Studies of the induced CD spectra demonstrated that 4[4-(dimethylamino)styryl]-1-dococylpyridinium (DMASDPB) could orient on the chiral nanotemplates of DNA in the self-assembled films. UV−vis analysis indicated that these film materials have high transparency from 300 to about 1000 nm. These self-assembled functional-dye-containing DNA−surfactant complex materials, with good processability for multilayer integration into large-area devices, will have promising applications in molecular optical and molecular optoelectronic fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.