The Josephson effect is a fundamental quantum phenomenon where a dissipationless supercurrent is introduced in a weak link between two superconducting electrodes by Andreev reflections. The physical details and topology of the junction drastically modify the properties of the supercurrent and a strong enhancement of the critical supercurrent is expected to occur when the topology of the junction allows an emergence of Majorana bound states. Here we report charge transport measurements in mesoscopic Josephson junctions formed by InAs nanowires and Ti/Al superconducting leads. Our main observation is a colossal enhancement of the critical supercurrent induced by an external magnetic field applied perpendicular to the substrate. This striking and anomalous supercurrent enhancement cannot be described by any known conventional phenomenon of Josephson junctions. We consider these results in the context of topological superconductivity, and show that the observed critical supercurrent enhancement is compatible with a magnetic field-induced topological transition.
Despite the near-unity internal quantum efficiencies (IQEs) demonstrated for GaAs based light emitters, laser cooling of the ubiquitous III-V semiconductors has not been feasible. The key challenges for III-V optical cooling are the reduced absorption of the optical excitation at photon energies well below the band gap and the strong confinement of the light in the high refractive index semiconductors. Here we investigate the possibility to eliminate the need for light extraction and to eventually relax the requirements of the IQE. This is done by using electroluminescence and optical energy transfer within intracavity devices consisting of an AlGaAs/GaAs double heterojunction LED and a GaAs pn-homojunction photodiode enclosed within a single semiconductor cavity. We measure the intracavity energy transfer i.e. the coupling quantum efficiency (CQE) between the two diodes and estimate loss mechanisms by simultaneously measuring the IV-characteristics of the emitter diode and the photocurrent of the absorber diode. The measured CQE is below 60 % due to the mirror, light extraction, nonradiative and detection losses. While this is far below the state-of-the-art efficiencies, our results suggest that it will be possible to substantially improve the efficiency by adopting the fabrication and design principles used for the best performing photoluminescent emitters.
Infrared (IR) radiation detectors are used in numerous applications from thermal imaging to spectroscopic gas sensing. Obtaining high speed and sensitivity, low-power operation, and cost-effectiveness with a single technology remains to be a challenge in the field of IR sensors. By combining nano-thermoelectric transduction and nanomembrane photonic absorbers, we demonstrate uncooled IR bolometer technology that is material-compatible with large-scale CMOS fabrication and provides fast and high sensitivity response to long-wavelength IR (LWIR) around 10 µm. The fast operation speed stems from the low heat capacity metal layer grid absorber connecting the sub-100 nm-thick n- and p-type Si nano-thermoelectric support beams, which convert the radiation induced temperature rise into voltage. The nano-thermoelectric transducer-support approach benefits from enhanced phonon surface scattering in the beams, leading to reduction in thermal conductivity, which enhances the sensitivity. We demonstrate different size nano-thermoelectric bolometric photodetector pixels with LWIR responsitivities, specific detectivities, and time constants in the ranges 179 V/W–2930 V/W, 1.5 × 107 cm Hz1/2/W–3.1 × 108 cm Hz1/2/W, and 66 µs–3600 µs, respectively. We benchmark the technology against different LWIR detector solutions and show how nano-thermoelectric detector technology can reach the fundamental sensitivity limits posed by phonon and photon thermal fluctuation noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.