Harmful algae blooms (HABs) cause acute effects on marine ecosystems due to their production of endogenous toxins or their enormous biomass, leading to significant impacts on local economies and public health. Although HAB monitoring has been intensively performed at spatiotemporal scales in coastal areas of the world over the last decades, procedures have not yet been standardized. HAB monitoring procedures are complicated and consist of many methodologies, including physical, chemical, and biological water sample measurements. Each monitoring program currently uses different combinations of methodologies depending on site specific purposes, and many prior programs refer to the procedures in quotations. HAB monitoring programs in Chile have adopted the traditional microscopic and toxin analyses but not molecular biology and bacterial assemblage approaches. Here we select and optimize the HAB monitoring methodologies suitable for Chilean geography, emphasizing on metabarcoding analyses accompanied by the classical tools with considerations including cost, materials and instrument availability, and easiness and efficiency of performance. We present results from a pilot study using the standardized stepwise protocols, demonstrating feasibility and plausibility for sampling and analysis for the HAB monitoring. Such specific instructions in the standardized protocol are critical obtaining quality data under various research environments involving multiple stations, different analysts, various time-points, and long HAB monitoring duration.
Harmful algae blooms (HABs) monitoring has been implemented worldwide, and Chile, a country famous for its fisheries and aquaculture, has intensively used microscopic and toxin analyses for decades for this purpose. Molecular biological methods, such as high-throughput DNA sequencing and bacterial assemblage-based approaches, are just beginning to be introduced in Chilean HAB monitoring, and the procedureshave not yet been standardized. Here, 16S rRNA and 18S rRNA metabarcoding analyses for monitoring Chilean HABs are introduced stepwise. According to a recent hypothesis, algal-bacterial mutualistic association plays a critical synergetic or antagonistic relationship accounting for bloom initiation, maintenance, and regression. Thus, monitoring HAB from algal-bacterial perspectives may provide a broader understanding of HAB mechanisms and the basis for early warning. Metabarcoding analysis is one of the best suited molecular-based tools for this purpose because it can detect massive algal-bacterial taxonomic information in a sample. The visual procedures of sampling to metabarcoding analysis herein provide specific instructions, aiming to reduce errors and collection of reliable data.
Sinantropía y conservación marina: el caso del chungungo Lontra felina en el sur de ChileAbstract.-We describe the synanthropic behavior of Lontra felina along its geographic distribution. The marine otter used fishing ports infrastructure for shelter and food. It forages on the remains of fish discarded by fishermen. Identified threats to the conservation of this species in synanthropy include incidental mortality in fisheries and persecution by domestic animals. The opportunities are creating niche food and shelter, which favor the permanence and population growth. Finally, we identify the important variables to consider in future studies on synanthropy of this marine mammal in the socioecological systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.