For the investigation of chemical reaction networks, the efficient and accurate determination of all relevant intermediates and elementary reactions is mandatory.The complexity of such a network may grow rapidly, in particular if reactive species are involved that might cause a myriad of side reactions. Without automation, a complete investigation of complex reaction mechanisms is tedious and possibly unfeasible. Therefore, only the expected dominant reaction paths of a chemical reaction network (e.g., a catalytic cycle or an enzymatic cascade) are usually explored in practice. Here, we present a computational protocol that constructs such networks in a parallelized and automated manner. Molecular structures of reactive complexes are generated based on heuristic rules derived from conceptual electronic-structure theory and subsequently optimized by quantum chemical methods to produce stable intermediates of an emerging reaction network. Pairs of intermediates in this network that might be related by an elementary reaction according to some structural similarity measure are then automatically detected and subjected to an automated search for the connecting transition state. The results are visualized as an automatically generated network graph, from which a comprehensive picture of the mechanism of a complex chemical process can be obtained that greatly facilitates the analysis of the whole network. We apply our protocol to the Schrock dinitrogen-fixation catalyst to study alternative pathways of catalytic ammonia production.
For the quantitative understanding of complex chemical reaction mechanisms, it is, in general, necessary to accurately determine the corresponding free energy surface and to solve the resulting continuous-time reaction rate equations for a continuous state space. For a general (complex) reaction network, it is computationally hard to fulfill these two requirements. However, it is possible to approximately address these challenges in a physically consistent way. On the one hand, it may be sufficient to consider approximate free energies if a reliable uncertainty measure can be provided. On the other hand, a highly resolved time evolution may not be necessary to still determine quantitative fluxes in a reaction network if one is interested in specific time scales. In this paper, we present discrete-time kinetic simulations in discrete state space taking free energy uncertainties into account. The method builds upon thermo-chemical data obtained from electronic structure calculations in a condensed-phase model. Our kinetic approach supports the analysis of general reaction networks spanning multiple time scales, which is here demonstrated for the example of the formose reaction. An important application of our approach is the detection of regions in a reaction network which require further investigation, given the uncertainties introduced by both approximate electronic structure methods and kinetic models. Such cases can then be studied in greater detail with more sophisticated first-principles calculations and kinetic simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.