Fossilized plant resins, or ambers, offer a unique paleontological window into the history of life. A natural polymer, amber can preserve aspects of ancient environments, including whole organisms, for tens or even hundreds of millions of years. While most amber research involves imaging with visual light, other spectra are increasingly used to characterize both organismal inclusions as well as amber matrix. Terahertz (THz) radiation, which occupies the electromagnetic band between microwave and infrared light wavelengths, is non-ionizing and frequently used in polymer spectroscopy. Here, we evaluate the utility of amber terahertz spectroscopy in a comparative setting for the first time by analyzing the terahertz optical properties of samples from 10 fossil deposits ranging in age from the Miocene to the Early Cretaceous. We recover no clear relationships between amber age or botanical source and terahertz permittivity; however, we do find apparent deposit-specific permittivity among transparent amber samples. By comparing the suitability of multiple permittivity models across sample data we find that models with a distribution of dielectric relaxation times best describe the spectral permittivity of amber. We also demonstrate a process for imaging amber inclusions using terahertz transmission and find that terahertz spectroscopy can be used to identify some synthetic amber forgeries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.