Purpose The aim of this study was to systematically evaluate the effect of thresholding algorithms used in computer vision for the quantification of prostate-specific membrane antigen positron emission tomography (PET) derived tumor volume (PSMA-TV) in patients with advanced prostate cancer. The results were validated with respect to the prognostication of overall survival in patients with advanced-stage prostate cancer. Materials and methods A total of 78 patients who underwent [177Lu]Lu-PSMA-617 radionuclide therapy from January 2018 to December 2020 were retrospectively included in this study. [68Ga]Ga-PSMA-11 PET images, acquired prior to radionuclide therapy, were used for the analysis of thresholding algorithms. All PET images were first analyzed semi-automatically using a pre-evaluated, proprietary software solution as the baseline method. Subsequently, five histogram-based thresholding methods and two local adaptive thresholding methods that are well established in computer vision were applied to quantify molecular tumor volume. The resulting whole-body molecular tumor volumes were validated with respect to the prognostication of overall patient survival as well as their statistical correlation to the baseline methods and their performance on standardized phantom scans. Results The whole-body PSMA-TVs, quantified using different thresholding methods, demonstrate a high positive correlation with the baseline methods. We observed the highest correlation with generalized histogram thresholding (GHT) (Pearson r (r), p value (p): r = 0.977, p < 0.001) and Sauvola thresholding (r = 0.974, p < 0.001) and the lowest correlation with Multiotsu (r = 0.877, p < 0.001) and Yen thresholding methods (r = 0.878, p < 0.001). The median survival time of all patients was 9.87 months (95% CI [9.3 to 10.13]). Stratification by median whole-body PSMA-TV resulted in a median survival time from 11.8 to 13.5 months for the patient group with lower tumor burden and 6.5 to 6.6 months for the patient group with higher tumor burden. The patient group with lower tumor burden had significantly higher probability of survival (p < 0.00625) in eight out of nine thresholding methods (Fig. 2); those methods were SUVmax50 (p = 0.0038), SUV ≥3 (p = 0.0034), Multiotsu (p = 0.0015), Yen (p = 0.0015), Niblack (p = 0.001), Sauvola (p = 0.0001), Otsu (p = 0.0053), and Li thresholding (p = 0.0053). Conclusion Thresholding methods commonly used in computer vision are promising tools for the semiautomatic quantification of whole-body PSMA-TV in [68Ga]Ga-PSMA-11-PET. The proposed algorithm-driven thresholding strategy is less arbitrary and less prone to biases than thresholding with predefined values, potentially improving the application of whole-body PSMA-TV as an imaging biomarker.
Objectives Over the course of their treatment, patients often switch hospitals, requiring staff at the new hospital to import external imaging studies to their local database. In this study, the authors present MOdality Mapping and Orchestration (MOMO), a Deep Learning–based approach to automate this mapping process by combining metadata analysis and a neural network ensemble. Methods A set of 11,934 imaging series with existing anatomical labels was retrieved from the PACS database of the local hospital to train an ensemble of neural networks (DenseNet-161 and ResNet-152), which process radiological images and predict the type of study they belong to. We developed an algorithm that automatically extracts relevant metadata from imaging studies, regardless of their structure, and combines it with the neural network ensemble, forming a powerful classifier. A set of 843 anonymized external studies from 321 hospitals was hand-labeled to assess performance. We tested several variations of this algorithm. Results MOMO achieves 92.71% accuracy and 2.63% minor errors (at 99.29% predictive power) on the external study classification task, outperforming both a commercial product (82.86% accuracy, 1.36% minor errors, 96.20% predictive power) and a pure neural network ensemble (72.69% accuracy, 10.3% minor errors, 99.05% predictive power) performing the same task. We find that the highest performance is achieved by an algorithm that combines all information into one vote-based classifier. Conclusion Deep Learning combined with metadata matching is a promising and flexible approach for the automated classification of external DICOM studies for PACS archiving. Key Points • The algorithm can successfully identify 76 medical study types across seven modalities (CT, X-ray angiography, radiographs, MRI, PET (+CT/MRI), ultrasound, and mammograms). • The algorithm outperforms a commercial product performing the same task by a significant margin (> 9% accuracy gain). • The performance of the algorithm increases through the application of Deep Learning techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.