Ovarian cancer is a cancerous growth arising from the ovary and with poor prognosis that usually have resistant to all currently available treatments. Whether (E)-2,4-bis(p-hydroxyphenyl)-2-butenal (butenal) synthesized by Maillard reaction from fructose-tyrosine, has potential therapeutic activity against human ovarian cancer was investigated using two ovarian cancer cell lines (PA-1, SK-OV-3). We found that butenal could inhibit NF-κB/STAT3 activity, thereby inducing apoptotic cell death of ovarian cancer cells. We treated with several concentration of butenal each cell line differently (PA-1; 5, 10 and 15 μg/ml, SK-OV-3; 10, 20 and 30 μg/ml). First, ovarian cancer cell lines exhibited constitutively active NF-κB, and treatment with butenal abolished this activation as indicated by DNA binding activity. Second, butenal suppressed activation of signal transducer and activator of transcription-3 as indicated by decreased phosphorylation and inhibition of Janus kinase-2 phosphorylation. Third, butenal induced expression of pro-apoptotic proteins such as proteolytic cleavage of PARP, Bax and activation of caspase-3, -8 and -9. Lastly, combination of butenal and TRAIL causes enhanced induction of apoptosis. Overall, our results indicate that butenal mediates its anti-proliferative and apoptotic effects through activation of multiple cell signaling pathways and enhances the TRAIL-induced apoptosis. These data suggested that butenal may be a potential anti-cancer agent in ovarian cancer.
It has been known that myriocin inhibits melanoma growth. However, the effects and action mechanisms of myriocin on lung cancer cell growth have not been reported. In this study, we examined whether myriocin isolated from Mycelia sterilia inhibits cell growth of lung cancer cells (A549 and NCI-H460) as well as possible signaling pathways involved in cell growth inhibition. Different concentrations of myriocin inhibited the growth of lung cancer cells through the induction of apoptotic cell death. Consistent with cancer cell growth inhibition, myriocin induced the expression of death receptors (DRs) as well as p-JNK and p-p38 in both cell lines. Moreover, the combination of myriocin with DR4 ligand TRAIL, and other well known anti-tumor drugs (docetaxel and cisplatin) synergistically inhibited cancer cell growth, and induced DR4 expression. These results showed that myriocin inhibits lung cancer cells growth through apoptosis via the activation of DR4 pathways, and enhanced anti-cancer effects with well known drugs. Thus, our study indicates that myriocin could be effective for lung cancer cells as an anti-cancer drug and/or a conjunction agent with well known anti-cancers.
The esterase-encoding gene, estA, was cloned from Acinetobacter lwoffii I6C-1 genomic DNA into Escherichia coli BL21(DE3) with plasmid vector pET-22b (pEM1). pEM1 has a 4.4-kb EcoRI insert that contained the complete estA gene. A 2.4-kb AvaI- SphI DNA fragment was subcloned (pEM3) and sequenced. estA gene encodes a protein of 366 amino acids (40,687 Da) with a pI of 9.17. The EstA signal peptide was 31 amino acids long, and the mature esterase sequence is 335 amino acids long (37.5 kDa). The conserved catalytic serine residue of EstA is in position 210. The EstA sequence was similar to that of the carboxylesterase from Acinetobacter calcoaceticus (75% identity, 85% similarity), Archaeoglobus fulgidus (37% identity, 59% similarity), and Mycobacterium tuberculosis (35% identity, 51% similarity). These enzymes contained the conserved motif G-X(1)-S-X(2)-G carrying the active-site serine of hydrolytic enzyme. The EstA activity in A. lwoffii I6C-1 remains constant throughout the stationary phase, and the activity in E. coil BL21 (DE3) with pEM1 was similar to A. lwoffii I6C-1.
Interleukin-4 (IL-4), a representative TH2 cytokine, plays a pathologic role in the onset of various allergic diseases including atopic dermatitis, atopic rhinitis, and asthma. Several drug candidates that down-regulate IL-4 expression have been studied for their possible use as antiallergic agents in clinical settings. Therefore, an in vitro test to evaluate IL-4 promoter activities might be useful for selecting candidates of novel natural therapeutics. The promoter region (-741 to +56) of IL-4 was cloned upstream of a luciferase gene in the plasmid pGL4.14 with a hygromycin resistance gene as a selection marker to generate pGL4.14-IL-4. Treatment with PMA and A23187 highly increased luciferase activity by approximately 10-fold compared with the control in both EL-4 thymoma and RBL-2H3 cells transiently transfected with pGL4.14-IL-4, as well as in stable cell lines constantly expressing pGL4.14-IL-4. Cyclosporin A and dexamethasone, well-known anti-allergic agents, significantly down-regulated the activity in a dose-dependent manner. The feasibility of this system was evaluated by measuring the down-regulatory activities of various extracts from the TBRC plant library on PMA- and A23187-induced luciferase activities of IL-4 promoter, and by measuring IL-4 production in cultured cells using ELISA assays. The results of this study suggest that this primary screening system is simple and time-saving, and might be suitable for the selection of natural therapeutic candidates for allergic disease by measuring the down-regulatory effects of natural products on the IL-4 promoter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.