Highlights d The SLC1A5 variant is a mitochondrial glutamine transporter d The SLC1A5 variant has a mitochondrial targeting sequence d Hypoxia controls SLC1A5 variant expression through HIF-2a d The SLC1A5 variant mediates mitochondrial glutamine metabolism in cancer
Adipocytes influence breast cancer behaviour via fatty acid release into the tumour microenvironment. Co-culturing human adipocytes and breast cancer cells increased CD36 expression, with fatty acid import into breast cancer cells. Genetic ablation of CD36 attenuates adipocyte-induced epithelial-mesenchymal transition (EMT) and stemness. We show a feedforward loop between CD36 and STAT3; where CD36 activates STAT3 signalling and STAT3 binds to the CD36 promoter, regulating its expression. CD36 expression results in metabolic reprogramming, with a shift towards fatty acid oxidation. CD36 inhibition induces de novo lipogenesis in breast cancer cells. Increased CD36 expression occurs with increased FABP4 expression. We showed that CD36 directly interacts with FABP4 to regulate fatty acid import, transport, and metabolism. CD36 and FABP4 inhibition induces apoptosis in tumour cells. These results indicate that CD36 mediates fatty acid import from adipocytes into cancer cells and activates signalling pathways that drive tumour progression. Targeting CD36 may have a potential for therapy, which will target the tumour microenvironment.
Summary Background Dermal papilla cells (DPCs) play a key role in hair regeneration and morphogenesis. Therefore, tremendous efforts have been made to promote DPC hair inductivity. Objectives The aim of this study was to investigate the mitogenic and hair inductive effects of hypoxia on DPCs and examine the underlying mechanism of hypoxia‐induced stimulation of DPCs. Methods DPCs' hair inductivity was examined under normoxia (20% O2) and hypoxia (2% O2). Results Hypoxia significantly increased the proliferation and delayed senescence of DPCs via Akt phosphorylation and downstream pathways. Hypoxia upregulated growth factor secretion of DPCs through the mitogen‐activated protein kinase pathway. Hypoxia‐preconditioned DPCs induced the telogen‐to‐anagen transition in C3H mice, and also enhanced hair neogenesis in a hair reconstitution assay. Injected green fluorescent protein‐labelled DPCs migrated to the outer root sheath of the hair follicle, and hypoxia‐preconditioning increased survival and migration of DPCs in vivo. Conditioned medium obtained from hypoxia increased the hair length of mouse vibrissa follicles via upregulation of alkaline phosphatase, vascular endothelial growth factor, and glial cell line‐derived neurotrophic factor. We examined the mechanism of this hypoxia‐induced stimulation, and found that reactive oxygen species (ROS) play a key role. For example, inhibition of ROS generation by N‐acetylcysteine or diphenyleneiodonium treatment attenuated DPCs' hypoxia‐induced stimulation, but treatment with ROS donors induced mitogenic effects and anagen transition. NADPH oxidase 4 is highly expressed in the DPC nuclear region, and NOX4 knockout by CRISPR‐Cas9 attenuated the hypoxia‐induced stimulation of DPCs. Conclusions Our results suggest that DPC culture under hypoxia has great advantages over normoxia, and is a novel solution for producing DPCs for cell therapy. Whatʼs already known about this topic? Dermal papilla cells (DPCs) play a key role in hair regeneration and morphogenesis, but they are difficult to isolate and expand for use in cell therapy. Tremendous efforts have been made to increase proliferation of DPCs and promote their hair formation ability. What does this study add? Hypoxia (2% O2) culture of DPCs increases proliferation, delays senescence and enhances hair inductivity of DPCs. Reactive oxygen species play a key role in hypoxia‐induced stimulation of DPC. What is the translational message? Preconditioning DPCs under hypoxia improves their hair regenerative potential, and is a novel solution for producing DPCs for cell therapy to treat hair loss.
Collectively, these results indicate that 1) tfASCs have similar characteristics as DP cells, 2) tfASCs have enhanced hair-regenerative potential compared with ASCs, and 3) tfASCs even at late passage can make new hair follicles in a hair reconstitution assay. Because DP cells are difficult to isolate/expand and ASCs have low hair inductivity, tfASCs and tfASC-CM are clinically good candidates for hair regeneration.
Gap junctions (GJs) are intercellular channels composed of connexins. Cellular molecules smaller than 1 kDa can diffuse through GJs by a process termed gap junctional intercellular communication (GJIC), which plays essential roles in various pathological and physiological conditions. Gambogic acid (GA), a major component of a natural yellow dye, has been used as traditional medicine and has been reported to have various therapeutic effects, including an anti-cancer effect. In this study, two different GJ assay methods showed that GA and its analogs inhibited GJIC. The inhibition was rapidly reversible and was not mediated by changes in surface expression or S368 phosphorylation of Cx43, cellular calcium concentration, or redox state. We also developed an assay system to measure the intercellular communication induced by Cx40, Cx30, and Cx43. Dihydrogambogic acid (D-GA) potently inhibited GJIC by Cx40 (IC50 = 5.1 μM), whereas the IC50 value of carbenoxolone, which is known as a broad spectrum GJIC inhibitor, was 105.2 μM. Thus, D-GA can act as a pharmacological tool for the inhibition of Cx40.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.