A novel method of detecting sodium and potassium ions separately with a sub-micropipette probe of approximately 100 nm inner diameter has been demonstrated. A poly(vinyl chloride) film containing crown ether ligands in sub-micropipettes filtered the ions. Sodium ions were trapped with bis(12-crown-4), whereas potassium ions were trapped with bis(benzo-15-crown-5). Alternate and direct bias voltages were applied to the counter electrode in the sub-micropipette so that the local ion concentrations could be observed as current signals after conversion to milivolt output signals with our low-current detection system prepared for this study.
Streptomyces sp. Y-110, isolated from soil, modified compactin to pravastatin, a therapeutic agent for hypercholesterolemia. In a batch culture, the highest production of pravastatin was 340 mg l(-1) from 750 mg compactin l(-1) in 24 h. By intermittent feeding of compactin into the culture medium, both the compactin concentration and its conversion increased to 2000 mg l(-1) and 1000 mg pravastatin l(-1), respectively, with the conversion rate of 10 mg l(-1) h(-1). Continuous feeding of compactin increased production of pravastatin to 15 mg l(-1) h(-1).
The local concentration of potassium ion in a single HeLa cell was observed with an ion-selective nano-pipette probe. Ion selectivity was achieved by using a polyvinyl chloride film with selected ionophores placed within the nano-pipette. Both alternating and constant bias voltages were applied to the counter electrode for the observation of local ion concentrations with a response time of less than 0.1 s. These measurements were enabled by a low-current detection system prepared specifically for this study. The difference in local potassium concentrations between inside a living HeLa cell and the surrounding solution was approximately 100 mM, while no difference in potassium ion concentration was observed between the interior of dead cells and the surrounding solution.
-It has been recognized that the use of nanoparticles (NPs) in the cosmetic industry results in products with better efficacy and functionality. However, recent advances in molecular toxicology have revealed that NP exposure can promote cytotoxicity and oxidative damage, which has raised health concerns in the use of NPs in personal care products. Nevertheless, the mechanistic basis for the toxicity and safety of cosmetic NPs is poorly understood. The goal of the study was to determine the cytotoxicity and intracellular distribution of titanium dioxide (TiO 2 ) NPs containing fatty acid composites (palmitoleic acid, palmitic acid, stearic acid and oleic acid) commonly used in cosmetic products. Two types of cells, human fibroblast skin cells and adenocarcinoma lung cells, were exposed to either bare TiO 2 NPs or TiO 2 NPs mixed with fatty acids for up to 48 hr. NMR analysis confirmed that the fatty acid composites remained in the NPs after wash. The cytotoxicity of TiO 2 NPs was determined by cell viability measurement using quantitative confocal microscopy, and the localization of two different forms of TiO 2 NPs were assessed using electron spectroscopic imaging with transmission electron microscopy. TiO 2 NPs containing fatty acids posed significantly reduced cytotoxicity (80-88% decreases) than bare NPs in both cell types. Furthermore, there was less intracellular penetration of the NPs containing fatty acid composites compared with bare NPs. These results provide important insights into the role of fatty acids in protecting the cells from possible toxicity caused by NPs used in the production of cosmetic products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.