Determining isotopic clusters and their monoisotopic masses is a first step in interpreting complex mass spectra generated by high-resolution mass spectrometers. We propose a mathematical model for isotopic distributions of polypeptides and an effective interpretation algorithm. Our model uses two types of ratios: intensity ratio of two adjacent peaks and intensity ratio product of three adjacent peaks in an isotopic distribution. These ratios can be approximated as simple functions of a polypeptide mass, the values of which fall within certain ranges, depending on the polypeptide mass. Given a spectrum as a peak list, our algorithm first finds all isotopic clusters consisting of two or more peaks. Then, it scores clusters using the ranges of ratio functions and computes the monoisotopic masses of the identified clusters. Our method was applied to high-resolution mass spectra obtained from a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer coupled to reverse-phase liquid chromatography (RPLC). For polypeptides whose amino acid sequences were identified by tandem mass spectrometry (MS/MS), we applied both THRASH-based software implementations and our method. Our method was observed to find more masses of known peptides when the numbers of the total clusters identified by both methods were fixed. Experimental results show that our method performed better for isotopic mass clusters of weak intensity where the isotopic distributions deviate significantly from their theoretical distributions. Also, it correctly identified some isotopic clusters that were not found by THRASH-based implementations, especially those for which THRASH gave 1 Da mismatches. Another advantage of our method is that it is very fast, much faster than THRASH that calculates the least-squares fit.
BackgroundProtein quantification is an essential step in many proteomics experiments. A number of labeling approaches have been proposed and adopted in mass spectrometry (MS) based relative quantification. The mTRAQ, one of the stable isotope labeling methods, is amine-specific and available in triplex format, so that the sample throughput could be doubled when compared with duplex reagents.Methods and resultsHere we propose a novel data analysis algorithm for peptide quantification in triplex mTRAQ experiments. It improved the accuracy of quantification in two features. First, it identified and separated triplex isotopic clusters of a peptide in each full MS scan. We designed a schematic model of triplex overlapping isotopic clusters, and separated triplex isotopic clusters by solving cubic equations, which are deduced from the schematic model. Second, it automatically determined the elution areas of peptides. Some peptides have similar atomic masses and elution times, so their elution areas can have overlaps. Our algorithm successfully identified the overlaps and found accurate elution areas. We validated our algorithm using standard protein mixture experiments.ConclusionsWe showed that our algorithm was able to accurately quantify peptides in triplex mTRAQ experiments. Its software implementation is compatible with Trans-Proteomic Pipeline (TPP), and thus enables high-throughput analysis of proteomics data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.