Dopamine is a key neurotransmitter that plays essential roles in the central nervous system, including motor control, motivation, arousal, and reward. Thus, abnormal levels of dopamine directly cause several neurological diseases, including depressive disorders, addiction, and Parkinson’s disease (PD). To develop a new technology to treat such diseases and disorders, especially PD, which is currently incurable, dopamine release from living cells intended for transplantation or drug screening must be precisely monitored and assessed. Owing to the advantages of miniaturisation and rapid detection, numerous electrical techniques have been reported, mostly in combination with various nanomaterials possessing specific nanoscale geometries. This review highlights recent advances in electrical biosensors for dopamine detection, with a particular focus on the use of various nanomaterials (e.g., carbon-based materials, hybrid gold nanostructures, metal oxides, and conductive polymers) on electrode surfaces to improve both sensor performance and biocompatibility. We conclude that this review will accelerate the development of electrical biosensors intended for the precise detection of metabolite release from living cells, which will ultimately lead to advances in therapeutic materials and techniques to cure various neurodegenerative disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.