PURPOSE
The purpose of this study is to evaluate translucency and masking ability of translucent zirconia compared to conventional zirconia and lithium disilicate materials.
MATERIALS AND METHODS
Three types of zirconia blocks with different yttria contents (3Y, 4Y, 5.5Y) and LS blocks (Rosetta SM) were used. Ten specimens for each group were fabricated with 10 mm diameter, with both 0.8 mm and 1.5 mm thicknesses (± 0.02 mm). All groups of zirconia specimens were sintered and polished according to the manufacturer’s instructions. To calculate the translucency parameter (TP), CIELAB value was measured with a spectrophotometer on black and white backgrounds. To investigate the color masking abilities, background shades of A2, normal dentin, discolored dentin, and titanium were used. The color difference (ΔE) was calculated with the CIELAB values of A2 shade background as a reference compared with the values in the various backgrounds. One-way ANOVA and Bonferroni tests were conducted (
P
< .05).
RESULTS
The TP values of zirconia specimens increased as the yttria content increased. All materials used in the study were able to adequately mask normal dentin shade (ΔE < 5.5), but were incapable of masking severely discolored dentin (ΔE > 5.5). On the titanium background, all materials of 1.5 mm thickness were able to mask the background shade, but with a thickness of 0.8 mm, only 3Y-TZP and 4Y-PSZ were able to mask titanium background.
CONCLUSION
All zirconia materials and lithium disilicate specimens used in this study were unable to adequately mask the shade of severely discolored dentin. It is recommended to use 3Y-TZP or 4Y-PSZ with a sufficient thickness of 0.8 mm or more to mask titanium.
1. The interactions between herbal dietary supplements and therapeutic drugs have emerged as an important issue and P-glycoprotein (P-gp) has been reported as one of the significant factors of these interactions. 2. The objective of this article is to examine the effects of single and repeated administrations of silymarin on pharmacokinetics of a P-gp substrate, risperidone, and its major metabolite, 9-hydroxyrisperidone, in rats. 3. To determine the plasma levels of risperidone and 9-hydroxyrisperidone in rats, a HPLC method was developed using a liquid-liquid acid back extraction. When risperidone (6 mg/kg) was co-administered with silymarin (40 mg/kg) to rats orally, the C(max) of 9-hydroxyrisperidone was significantly increased to1.3-fold (p < 0.05), while the other pharmacokinetic parameters did not show any significant differences. Expanding the experiment where rats were repeatedly administered with silymarin for 5 days prior to giving risperidone, the C(max) of risperidone and 9-hydroxyrisperidone were significantly increased to 2.4-fold (p < 0.001) and 1.7-fold (p < 0.001), respectively, and the AUC(0-t), as well to 1.7-fold (p < 0.05) and 2.1-fold (p < 0.01), respectively. 4. The repeated exposures of silymarin, compared to single administration of silymarin, increased oral bioavailability and affected the pharmacokinetics of risperidone and 9-hydroxyrisperidone, by inhibiting P-gp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.