As part of an effort to improve plant-derived foods such as potatoes, eggplants, and tomatoes, the antiproliferative activities against human colon (HT29) and liver (HepG2) cancer cells of a series of structurally related individual compounds were examined using a microculture tetrazolium (MTT) assay. The objective was to assess the roles of the carbohydrate side chain and aglycon part of Solanum glycosides in influencing inhibitory activities of these compounds. Evaluations were carried out with four concentrations each (0.1, 1, 10, and 100 microg/mL) of the the potato trisaccharide glycoalkaloids alpha-chaconine and alpha-solanine; the disaccharides beta(1)-chaconine, beta(2)-chaconine, and beta(2)-solanine; the monosaccharide gamma-chaconine and their common aglycon solanidine; the tetrasaccharide potato glycoalkaloid dehydrocommersonine; the potato aglycon demissidine; the tetrasaccharide tomato glycoalkaloid alpha-tomatine, the trisaccharide beta(1)-tomatine, the disaccharide gamma-tomatine, the monosaccharide delta-tomatine, and their common aglycon tomatidine; the eggplant glycoalkaloids solamargine and solasonine and their common aglycon solasodine; and the nonsteroidal alkaloid jervine. All compounds were active in the assay, with the glycoalkaloids being the most active and the hydrolysis products less so. The effectiveness against the liver cells was greater than against the colon cells. Potencies of alpha-tomatine and alpha-chaconine at a concentration of 1 microg/mL against the liver carcinoma cells were higher than those observed with the anticancer drugs doxorubicin and camptothecin. Because alpha-chaconine, alpha-solanine, and alpha-tomatine also inhibited normal human liver HeLa (Chang) cells, safety considerations should guide the use of these compounds as preventative or therapeutic treatments against carcinomas.
Mechanical properties, such as strength and stiffness, of laminated carbon fiber reinforced plastic (CFRP) are generally affected by the lay-up method. However, no precise design rules to replace steel products with CFRP have been established that satisfy these properties. Therefore, this study proposes a set of rules to design automotive parts with equivalent bending stiffness through structural analysis and genetic algorithms (GAs). First, the thickness of the CFRP product was determined by comparing the bending deformation of steel products by structural analysis. To minimize the orthotropic characteristics of CFRP, the quasi-isotropic lay-up method was implemented to determine the thickness. Next, the lay-up angle was determined using GAs. The optimized lay-up angle of the CFRP product with minimum bending deformation was determined by population generation, cross-over, mutation, and fitness evaluation. CFRP B-pillar reinforcement was fabricated using the determined conditions and the bending deformation of the single component was evaluated. Finally, the B-pillar assembled with CFRP reinforcement was investigated by the drop tower test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.