Veno-arterial extracorporeal membrane oxygenation (ECMO) through the femoral vein and artery may cause differential hypoxia, i.e., lower PaO2 in the upper body than in the lower body, because of normal cardiac output with severe impairment of pulmonary function. Hereby, we report the diagnosis and the treatment of differential hypoxia caused by veno-arterial ECMO. A 39-year-old man received cardiopulmonary resuscitation from a cardiac arrest due to acute myocardial infarction. Even after more than 30 min of resuscitation, spontaneous circulation had not resumed. Next, we performed veno-arterial ECMO through the femoral artery and vein, and the patient recovered consciousness on the second day of ECMO. On day 5 of ECMO, he lost consciousness again and presented a generalized tonic-clonic seizure, and an electroencephalogram showed delta waves suggesting diffuse cerebral cortical dysfunction. While an echocardiogram revealed improvements in myocardial function, a follow up chest radiograph showed increasing massive parenchymal infiltrations, and gas analysis of blood from the right radial artery revealed severe hypoxemia. These findings indicated a definite diagnosis of differential hypoxia, and therefore, we inserted a 17-Fr cannula into the left subclavian vein as a return cannula. The patient’s consciousness and pulmonary infiltrations were improved 2 days after veno-arterial-venous ECMO, and the electroencephalogram showed normal findings. To our knowledge, this is the first report of successful clinical management of differential hypoxia. We suggest that veno-arterial-venous ECMO could be the treatment of choice for differential hypoxia resulting from veno-arterial ECMO.
The sense of taste is an essential chemosensory modality that enables animals to identify appropriate food sources and control feeding behavior. In particular, the recognition of bitter taste prevents animals from feeding on harmful substances. Feeding is a complex behavior comprised of multiple steps, and food quality is continuously assessed. We here examined the role of pharyngeal gustatory organs in ingestion behavior. As a first step, we constructed a gustatory receptor-to-neuron map of the larval pharyngeal sense organs, and examined corresponding gustatory receptor neuron (GRN) projections in the larval brain. Out of 22 candidate bitter compounds, we found 14 bitter compounds that elicit inhibition of ingestion in a dose-dependent manner. We provide evidence that certain pharyngeal GRNs are necessary and sufficient for the ingestion response of larvae to caffeine. Additionally, we show that a specific pair of pharyngeal GRNs, DP1, responds to caffeine by calcium imaging. In this study we show that a specific pair of GRNs in the pharyngeal sense organs coordinates caffeine sensing with regulation of behavioral responses such as ingestion. Our results indicate that in Drosophila larvae, the pharyngeal GRNs have a major role in sensing food palatability to regulate ingestion behavior. The pharyngeal sense organs are prime candidates to influence ingestion due to their position in the pharynx, and they may act as first level sensors of ingested food.
The effects of interfacial bonding on mechanical properties of single-walled
carbon nanotube reinforced copper matrix nanocomposites were investigated.
The nanocomposites were fabricated by means of a powder metallurgy process,
which consists of mixing carbon nanotubes with matrix powder followed by
hot-pressing. The mixing process was carried out by ultrasonicating the nanotubes
and copper powder in ethanol. The interfacial strength between the nanotubes
and the copper matrix was improved by coating the nanotubes with nickel. The
displacement rate of the nanotube reinforced nanocomposites was found to increase at
200 °C, whereas that of the nickel-coated nanotube reinforced nanocomposites significantly
decreased. The incorporation of carbon nanotubes and nickel-coated carbon nanotubes in
the copper matrix composites improved tribological properties compared with those of pure
copper specimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.