Diabetic nephropathy is the main cause of end-stage renal disease. MicroRNAs are powerful regulators of the genome, and global expression profiling revealed miR-21 to be among the most highly regulated microRNAs in kidneys of mice with diabetic nephropathy. In kidney biopsies of diabetic patients, miR-21 correlated with tubulointerstitial injury. In situ PCR analysis showed a specific enrichment of miR-21 in glomerular cells. We identified cell division cycle 25a (Cdc25a) and cyclin-dependent kinase 6 (Cdk6) as novel miR-21 targets in mesangial cells. miR-21-mediated repression of Cdc25a and Cdk6 resulted in impaired cell cycle progression and subsequent mesangial cell hypertrophy. miR-21 increased podocyte motility by regulating phosphatase and tensin homolog (Pten). miR-21 antagonism in vitro and in vivo in streptozotocin-induced diabetic mice decreased mesangial expansion, interstitial fibrosis, macrophage infiltration, podocyte loss, albuminuria, and fibrotic- and inflammatory gene expression. In conclusion, miR-21 antagonism rescued various functional and structural parameters in mice with diabetic nephropathy and, thus, might be a viable option in the treatment of patients with diabetic kidney disease.
Dysregulation of the actin cytoskeleton in podocytes represents a common pathway in the pathogenesis of proteinuria across a spectrum of chronic kidney diseases (CKD). The GTPase dynamin has been implicated in the maintenance of cellular architecture in podocytes through its direct interaction with actin. Furthermore, the propensity of dynamin to oligomerize into higher-order structures in an actin-dependent manner and to crosslink actin microfilaments into higher order structures have been correlated with increased actin polymerization and global organization of the actin cytoskeleton in the cell. We found that use of the small molecule Bis-T-23, which promotes actin-dependent dynamin oligomerization and thus increased actin polymerization in injured podocytes, was sufficient to improve renal health in diverse models of both transient kidney disease and of CKD. In particular, administration of Bis-T-23 in these renal disease models restored the normal ultrastructure of podocyte foot processes, lowered proteinuria, lowered collagen IV deposits in the mesangial matrix, diminished mesangial matrix expansion and extended lifespan. These results further establish that alterations in the actin cytoskeleton of kidney podocytes is a common hallmark of CKD, while also underscoring the significant regenerative potential of injured glomeruli and that targeting the oligomerization cycle of dynamin represents an attractive potential therapeutic target to treat CKD.
Streptozotocin increased blood glucose from 117.0 +/- 3.6 to 510.0 +/- 19.4 mg/dl (N = 8, P < 0.01) and induced albuminuria. PKC isoforms alpha, beta, delta, epsilon, and zeta were all detected in control animals. Western blot showed increased PKC alpha expression in kidney and heart (160% and 170%, respectively). PKC betaI, betaII, and delta expression was not influenced by hyperglycemia. PKC zeta was decreased in diabetic animals in both tissues by 60%. The membrane association of PKC alpha and PKC epsilon was increased; however, the relative amount of PKC in the particulate fraction was not influenced by hyperglycemia. Immunohistochemistry revealed a marked increase in PKC alpha immunoreactivity in renal glomeruli and interstitial capillaries, cardiac capillaries, and skeletal muscle, as well as in the endothelial cells of larger arteries. PKC beta showed a small decrease in the glomeruli. PKC epsilon was increased in renal tubules in diabetic rats but was decreased in the myocardium. PKC zeta was expressed in both myocardial and glomerular cells but was decreased during hyperglycemia. Our results demonstrate that PKC isoforms are differentially regulated in kidney and heart in diabetes. High glucose increases PKC alpha expression, whereas PKC zeta is down-regulated. The finding that PKC alpha is mostly increased in endothelial cells supports a role for PKC alpha in functional endothelial disturbances observed in diabetes.
The leukocyte adhesion molecule ICAM-1 is implicated in ischemic renal reperfusion injury. We tested the utility of an ICAM-1 antisense oligodeoxyribonucleotide (ODN) with lipofectin, six hours prior to 30 minutes of bilateral renal ischemia in the rat. We measured ICAM-1 expression by immunohistochemistry and Western blot. Our antisense ODN showed a specific ICAM-1 surface expression inhibition in vitro. We then assessed ICAM-1 expression, leukocyte infiltration, serum creatinine, serum urea concentration, and renal histology in rats subjected to renal ischemia and controls. Serum creatinine and urea concentrations 12 and 24 hours post-ischemia were increased in saline treated and reverse ODN treated rats, compared to antisense ODN treated or sham operated rats (P < 0.05). Western blotting showed decreased ICAM-1 protein in antisense ODN-treated kidneys, compared to reverse ODN treated and saline treated ischemic controls (P < 0.05). Antisense ODN also ameliorated the ischemia-induced infiltration of granulocytes and macrophages (P < 0.05), and resulted in less cortical renal damage as assessed by a quantitative pathological grading scale (P < 0.05), compared to reverse ODN or saline treatment. Thus, antisense ODN for ICAM-1 protected the kidney against ischemic renal failure. The clinical applicability of these findings extends beyond ischemic acute renal failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.