Purpose While a number of studies examined the eWOM (online word-of-mouth) factors affecting box office, the studies on the impact of review helpfulness on box office are lacking. The purpose of this paper is to fill the void in previous studies and further extend prior work regarding eWOM and box office. In order to explain the interaction effect of helpfulness with other variables on product sales, this study posits that review characteristics such as number of reviews, review rating, review length interact with review helpfulness to have an influence on box office. Further, as the studies that have examined whether eWOM factors are significant in box office performances for the international markets other than US are lacking, this study is targeting Korean markets to validate the effect of eWOM on box office. Design/methodology/approach This study used publicly available data from www.naver.com to build a sample of online review data concerning box office. The final sample of the study included 2090 movies. Findings The results indicated that in cases when the review is helpful, the number of reviews and review length are more greatly influencing box office. Review rating, review extremity, and helpfulness for reviewer are important determinants for review helpfulness. Practical implications Managers can concentrate on the review rating and review extremity of online customer reviews in the design of online sites for movies. The design of user review systems can follow the direction that promotes more helpfulness for online user reviews based on an enhanced understanding of what drives helpfulness voting. Originality/value Given that previous studies on the effect of review helpfulness on box office are lacking, it contributes to eWOM literature by investigating the impact of review helpfulness on box office revenue.
More and more people are gravitating to reading online product reviews prior to making purchasing decisions. Because a number of reviews that vary in usefulness are posted every day, much attention is being paid to measuring their helpfulness. The goal of this paper is to investigate the various determinants of the helpfulness of reviews, and it also intends to examine the moderating effect of product type, that is, the experience or search goods in relation to the helpfulness of online reviews. The study results show that reviewer reputation, the disclosure of reviewer identity, and review depth positively affect the helpfulness of an online review. The moderating effects of product type exist for these determinants on helpfulness. That is, the number of reviews for a product and the disclosure of reviewer identity have a greater influence on the helpfulness for experience goods, while reviewer reputation, review extremity, and review depth are more important for helpfulness in relation to search goods. The interaction effects exist for average review rating and average review depth for a product with review helpfulness on product sales. The results of the study will identify helpful online reviews and assist in designing review sites effectively. ARTICLE HISTORY
Purpose The purpose of this paper is to suggest important determinants for helpfulness from the reviews’ product data, review characteristics, and textual characteristics, and identify the more crucial factors among these determinants by using statistical methods. Furthermore, this study intends to propose a classification-based review recommender using a decision tree (CRDT) that uses a decision tree to identify and recommend reviews that have a high level of helpfulness. Design/methodology/approach This study used publicly available data from Amazon.com to construct measures of determinants and helpfulness. To examine this, the authors collected data about economic transactions on Amazon.com and analyzed the associated review system. The final sample included 10,000 reviews composed of 4,799 helpful and 5,201 not helpful reviews. Findings The study selected more crucial determinants from a comprehensive group of product, reviewer, and textual characteristics through using a t-test and logistics regression. The five important variables found to be significant in both t-test and logistic regression analysis were the total number of reviews for the product, the reviewer’s history macro, the reviewer’s rank, the disclosure of the reviewer’s name, and the length of the review in words. The decision tree method produced decision rules for determining helpfulness from the value of the product data, review characteristics, and textual characteristics. The prediction accuracy of CRDT was better than that of the k-nearest neighbor (kNN) method and linear multivariate discriminant analysis in terms of prediction error. CRDT can suggest better determinants that have a greater effect on the degree of helpfulness. Practical implications The important factors suggested as affecting review helpfulness should be considered in the design of websites, as online retail sites with more helpful reviews can provide a greater potential value to customers. The results of the study suggest managers and marketers better understand customers’ review and increase the value to customers by proving enhanced diagnosticity to consumers. Originality/value This study is different from previous studies in that it investigated the holistic aspect of determinants, that is, product, review, and textual characteristics for classifying helpful reviews, and selected more crucial determinants from a comprehensive group of product, reviewer, and textual characteristics by using a t-test and logistics regression. This study utilized a decision tree, which has rarely been used in predicting review helpfulness, to provide rules for identifying helpful online reviews.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.