Depth maps acquired by low-cost sensors have low spatial resolution, which restricts their usefulness in many image processing and computer vision tasks. To increase the spatial resolution of the depth map, most state-of-the-art depth map super-resolution methods based on deep learning extract the features from a high-resolution guidance image and concatenate them with the features from the depth map. However, such simple concatenation can transfer unnecessary textures, known as texture copying artifacts, of the guidance image to the depth map. To address this problem, we propose a novel depth map superresolution method using guided deformable convolution. Unlike standard deformable convolution, guided deformable convolution obtains 2D kernel offsets of the depth features from the guidance features. Because the guidance features are not explicitly concatenated with the depth features but are used only to determine the kernel offsets for the depth features, the proposed method can significantly alleviate the texture copying artifacts in the resultant depth map. Experimental results show that the proposed method outperforms the state-of-the-art methods in terms of qualitative and quantitative evaluations.INDEX TERMS Convolutional neural network, depth map, super-resolution.
Subpixel-based image down-sampling has been widely used to improve the apparent resolution of down-sampled images on display. However, previous subpixel rendering methods often introduce distortions, such as aliasing and color-fringing. This study proposes a novel subpixel rendering method that uses selective sampling and optimal filtering. We first generalize the previous frequency domain analysis results indicating the relationships between various down-sampling patterns and the aliasing artifact. Based on this generalized analysis, a subpixel-based down-sampling pattern for each image is selectively determined by utilizing the edge distribution of the image. Moreover, we investigate the origin of the color-fringing artifact in the frequency domain. Optimal spatial filters that can effectively remove distortions caused by the selected down-sampling pattern are designed via frequency domain analyses of aliasing and color-fringing. The experimental results show that the proposed method is not only robust to the aliasing and color-fringing artifacts but also outperforms the existing ones in terms of information preservation.INDEX TERMS Aliasing, color-fringing, frequency domain analysis, image down-sampling, optimal filtering, selective sampling, subpixel rendering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.