Three new species of Neosartorya and one new Aspergillus of section Fumigati are proposed using a polyphasic approach based on morphology, extrolite production and partial b-tubulin, calmodulin, and actin gene sequences. The phylogenetic analyses using the three genes clearly show that the taxa grouped separately from the known species and confirmed the phenotypic differences. Neosartorya denticulata is characterized by its unique denticulate ascospores with a prominent equatorial furrow; N. assulata by well developed flaps on the convex surface of the ascospores which in addition have two distinct equatorial crests and N. galapagensis by a funiculose colony morphology, short and narrow conidiophores and ascospores with two wide equatorial crests with a microtuberculate convex surface. Aspergillus turcosus can be distinguished by velvety, gray turquoise colonies and short, loosely columnar conidial heads. The four new taxa also have unique extrolite profiles, which contain the mycotoxins gliotoxin and viriditoxin in N. denticulate; apolar compounds provisionally named NEPS in N. assulata and gregatins in N. galapagensis. A. turcosus produced kotanins. N. denticulata sp. nov., N. assulata sp. nov., N. galapagensis sp. nov., and A. turcosus sp. nov. are described and illustrated.
A total of 770 samples of retail raw meat were examined for the presence of Campylobacter spp. The samples were obtained randomly from 232 retail stores in Korea from September 2001 to April 2006. The highest contamination rates were observed in chicken meat (220 181.4%] of 270 samples), whereas the rates of contamination in pork and beef were extremely low (1.6 and 1.2%, respectively). The antibiotic-resistant patterns of the 317 Campylobacter isolates were examined by the agar dilution method. Resistance to doxycycline was the most common (97.5%), followed by ciprofloxacin (95.9%), nalidixic acid (94.6%), tetracycline (94.6%), enrofloxacin (84.2%), and erythromycin (13.6%). All Campylobacter isolates from the retail raw meat were resistant to at least one of the six antibiotics tested, and 296 isolates (93.4%) showed multidrug (four or more antibiotics) resistance. This demonstrates that the multidrug-resistant Campylobacter species are widespread in meats in Korea. Therefore, further investigations will be needed to determine appropriate methods for eliminating Campylobacter contamination in industrial chicken production and food chains.
The recent emergence of Staphylococcus schleiferi in dogs with otitis externa or skin and soft tissue infections has become a significant zoonotic issues. In the current study, we investigated 1) the carriage rates of S. schleiferi among major staphylococci in healthy dogs and dogs with otitis externa, 2) antibiotic susceptibility profiles of S. schleiferi, particularly methicillin resistance (MR), and 3) virulence factors associated with skin and soft tissue infections such as ability to form biofilm, resistance to cationic antimicrobial peptides (CAMPs), and carriage of staphylococcal enterotoxin genes. Among the 21 S. schleiferi isolates, 5 isolates (24%) were determined to be methicillin-resistant (MRSS). Staphylococcal cassette chromosome mec (SCC mec ) typing revealed the presence of SCC mec type V in 4 MRSS isolates and type VII in one MRSS. Higher levels of antibiotic resistance, especially multidrug resistance, were observed in MRSS isolates compared to the methicillin-susceptible S. schleiferi (MSSS) isolates. In addition, MRSS isolates exhibited enhanced ability to form biofilm under static condition and all the 5 MRSS isolates carried three or more enterotoxin genes. However, there were no significant differences in resistance to CAMPs between MRSS and MSSS isolates. These findings suggest that coagulase-negative S. schleiferi is becoming more prevalent in canine otitis externa cases. Our results also highlight the presence of multidrug-resistant MRSS isolates with enhanced biofilm production and carriage of multiple enterotoxins.
Campylobacter species are one of the most common causes of bacterial diarrhea in humans worldwide. The consumption of foods contaminated with two Campylobacter species, C. jejuni and C. coli, is usually associated with most of the infections in humans. In this study, a rapid, reliable, and sensitive multiplex real-time quantitative PCR was developed for the simultaneous detection, identification, and quantification of C. jejuni and C. coli. In addition, the developed method was applied to the 50 samples of raw chicken meat collected from retail stores in Korea. C. jejuni and C. coli were detected in 88 and 86% of the samples by real-time quantitative PCR and the conventional microbiological method, respectively. The specificity of the primer and probe sets was confirmed with 30 C. jejuni, 20 C. coli, and 35 strains of other microbial species. C. jejuni and C. coli could be detected with high specificity in less than 4 h, with a detection limit of 1 log CFU/ml by the developed real-time PCR. The average counts (log CFU per milliliter) of C. jejuni or C. coli obtained by the conventional methods and by the real-time PCR assay were statistically correlated with a correlation coefficient (R2) between 0.73 and 0.78. The real-time PCR assay developed in this study is useful for screening for the presence and simultaneous differential quantification of C. jejuni and C. coli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.