We introduce a novel method for indoor localization with the user’s own smartphone by learning personalized walking patterns outdoors. Most smartphone and pedestrian dead reckoning (PDR)-based indoor localization studies have used an operation between step count and stride length to estimate the distance traveled via generalized formulas based on the manually designed features of the measured sensory signal. In contrast, we have applied a different approach to learn the velocity of the pedestrian by using a segmented signal frame with our proposed hybrid multiscale convolutional and recurrent neural network model, and we estimate the distance traveled by computing the velocity and the moved time. We measured the inertial sensor and global position service (GPS) position at a synchronized time while walking outdoors with a reliable GPS fix, and we assigned the velocity as a label obtained from the displacement between the current position and a prior position to the corresponding signal frame. Our proposed real-time and automatic dataset construction method dramatically reduces the cost and significantly increases the efficiency of constructing a dataset. Moreover, our proposed deep learning model can be naturally applied to all kinds of time-series sensory signal processing. The performance was evaluated on an Android application (app) that exported the trained model and parameters. Our proposed method achieved a distance error of <2.4% and >1.5% on indoor experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.