Due to the scale of social video sharing, User Generated Content (UGC) is getting more attention from academia and industry. To facilitate compression-related research on UGC, YouTube has released a large-scale dataset [1]. The initial dataset only provided videos, limiting its use in quality assessment. We used a crowd-sourcing platform to collect subjective quality scores for this dataset. We analyzed the distribution of Mean Opinion Score (MOS) in various dimensions, and investigated some fundamental questions in video quality assessment, like the correlation between full video MOS and corresponding chunk MOS, and the influence of chunk variation in quality score aggregation.
UGC video quality assessment (UGC-VQA) is a challenging research topic due to the high video diversity and limited public UGC quality datasets. State-of-the-art (SOTA) UGC quality models tend to use high complexity models, and rarely discuss the trade-off among complexity, accuracy, and generalizability. We propose a new perspective on UGC-VQA, and show that model complexity may not be critical to the performance, whereas a more diverse dataset is essential to train a better model. We illustrate this by using a light weight model, UVQ-lite, which has higher efficiency and better generalizability (less overfitting) than baseline SOTA models. We also propose a new way to analyze the sufficiency of the training set, by leveraging UVQ's comprehensive features. Our results motivate a new perspective about the future of UGC-VQA research, which we believe is headed toward more efficient models and more diverse datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.