In this paper, we derive longitudinal nonlinear equations of motion of a hovering insect with deformable abdomen to investigate the effect of the abdominal motion to the longitudinal dynamics. The blade-element theory, which is based on experimentally obtained aerodynamic coefficients, is used for the periodic force and moment excitation to the system. Here, we focus on the role of the deformable abdomen to investigate whether or not the flexible body is a decisive factor to the longitudinal flight dynamic stability. Three cases: 1) rigid connection between the thorax and abdomen, 2) flexible connection, and 3) active connection with a feedback control, are compared to check the role of the abdomen deformation on the longitudinal flight dynamic stability, by examining eigenvalues of the linearized system model of each case. The results show that an active control of the abdominal angle can stabilize the longitudinal flight dynamics of the insect modeled in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.