Intraperitoneal inoculation with live influenza A virus confers protection against intranasal infections in mice and ferrets. However, the responses of peritoneal cells to influenza A virus have not been investigated. Here we show that intraperitoneal inoculation with A/WSN/1933 (H1N1) virus induced virus-reactive IgG production in the peritoneal cavity in mice. The infection resulted in substantial but transient B cell and macrophage depletion along with massive neutrophil infiltration, but virus growth was not detected. Influenza A viruses bound to α-2,6-linked sialic acids of B cells and macrophages and induced apoptotic death of peritoneal cavity cells. However, re-infection with A/WSN/1933 virus did not have adverse effects on immune cells most likely because of the neutralizing antibodies produced in response to the first exposure. Infection of BALB/c mice with A/WSN/1933 induced cross-protection against an otherwise lethal intraperitoneal dose of A/Hongkong/4801/2014 (H3N2) virus. This information suggests that immunological responses in the peritoneal cavity can induce effective defense against future virus infection. Considering the unexpected potent immunoregulatory activity of the peritoneal cells against influenza viruses, we suggest that comparative studies on various immune reactions after infection through different routes may contribute to better selection of vaccination routes in development of efficacious influenza vaccines.
CpG-DNA activates the host immune system to resist bacterial infections. In this study, we examined the protective effect of CpG-DNA in mice against Escherichia coli (E. coli) K1 infection. Administration of CpG-DNA increased the survival of mice after E. coli K1 infection, which reduces the numbers of bacteria in the organs. Pre-injection of mice with CpG-DNA before E. coli K1 infection increased the levels of the complement C3 but not C3a and C3b. The survival of the mice after E. coli K1 infection was significantly decreased when the mice were pre-injected with the cobra venom factor (CVF) removing the complement compared to the non-CVF-treated mice group. It suggests that the complement has protective roles against E. coli K1 infection. In addition, the survival of complement-depleted mice was increased by CpG-DNA pre-administration before E. coli K1 infection. Therefore, we suggest that CpG-DNA enhances the anti-bacterial activity of the immune system by augmenting the levels of complement systems after E. coli K1 infection and triggering other factors as well. Further studies are required to investigate the functional roles of the CpG-DNA-induced complement regulation and other factors against urgent bacterial infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.