The pluripotency of embryonic stem cells (ESCs) is maintained by intracellular networks of many pluripotency-associated (PA) proteins such as OCT4, SOX2, and NANOG. However, the mechanisms underlying the regulation of protein homeostasis for pluripotency remain elusive.Here, we first demonstrate that autophagy acts together with the ubiquitin-proteasome system (UPS) to modulate the levels of PA proteins in human ESCs (hESCs). Autophagy inhibition impaired the pluripotency despite increment of PA proteins in hESCs. Immunogold-electron microscopy confirmed localization of OCT4 molecules within autophagosomes. Also, knockdown of LC3 expression led to accumulation of PA proteins and reduction of pluripotency in hESCs. Interestingly, autophagy and the UPS showed differential kinetics in the degradation of PA proteins. Autophagy inhibition caused enhanced accumulation of both cytoplasmic and nuclear PA proteins, whereas the UPS inhibition led to preferentially degrade nuclear PA proteins. Our findings suggest that autophagy modulates homeostasis of PA proteins, providing a new insight in the regulation of pluripotency in hESCs. STEM CELLS 2014;32:424-435
Costello syndrome (CS) is an autosomal dominant disorder caused by mutations in HRAS. Although CS patients have skeletal abnormalities, the role of mutated HRAS in bone development remains unclear. Here, we use CS induced pluripotent stem cells (iPSCs) undergoing osteogenic differentiation to investigate how dysregulation of extracellular matrix (ECM) remodeling proteins contributes to impaired osteogenesis. Although CS patient-derived iPSCs develop normally to produce mesenchymal stem cells (MSCs), the resulting CS MSCs show defective osteogenesis with reduced alkaline phosphatase activity and lower levels of bone mineralization. We found that hyperactivation of SMAD3 signaling during the osteogenic differentiation of CS MSCs leads to aberrant expression of ECM remodeling proteins such as MMP13, TIMP1, and TIMP2. CS MSCs undergoing osteogenic differentiation also show reduced b-catenin signaling. Knockdown of TIMPs permits normal differentiation of CS MSCs into osteoblasts and enhances b-catenin signaling in a RUNX2-independent manner. Thus, this study demonstrates that enhanced TIMP expression induced by hyperactivated SMAD3 signaling impairs the osteogenic development of CS MSCs via an inactivation of b-catenin signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.