Automatic extraction of brachial artery and measuring associated indices such as flow-mediated dilatation and Intima-media thickness are important for early detection of cardiovascular disease and other vascular endothelial malfunctions. In this paper, we propose the basic but important component of such decision-assisting medical software development -noise tolerant fully automatic segmentation of brachial artery from ultrasound images. Pixel clustering with Fuzzy C-Means algorithm in the quantization process is the key component of that segmentation with various image processing algorithms involved. This algorithm could be an alternative choice of segmentation process that can replace speckle noise-suffering edge detection procedures in this application domain.
Automatic segmentation of brachial artery and blood-flow dynamics are important for early detection of cardiovascular disease and other vascular endothelial malfunctions. In this paper, we propose a software that is noise tolerant and fully automatic in segmentation of brachial artery from color Doppler ultrasound images. Possibilistic C-Means clustering algorithm is applied to make the automatic segmentation. We use HSV color model to enhance the contrast of bloodstream area in the input image. Our software also provides index of hemoglobin distribution with respect to the blood flow velocity for pathologists to proceed further analysis. In experiment, the proposed method successfully extracts the target area in 59 out of 60 cases (98.3%) with field expert’s verification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.