Application areas that utilize the concept of IoT can be broadened to healthcare or remote monitoring areas. In this paper, a remote monitoring system for patients at home in IoT environments is proposed, constructed, and evaluated through several experiments. To make it operable in IoT environments, a protocol conversion scheme between ISO/IEEE 11073 protocol and oneM2M protocol, and a Multiclass Q-learning scheduling algorithm based on the urgency of biomedical data delivery to medical staff are proposed. In addition, for the sake of patients' privacy, two security schemes are proposed-the separate storage scheme of data in parts and the Buddy-ACK authorization scheme. The experiment on the constructed system showed that the system worked well and the Multiclass Q-learning scheduling algorithm performs better than the Multiclass Based Dynamic Priority scheduling algorithm. We also found that the throughputs of the Multiclass Q-learning scheduling algorithm increase almost linearly as the measurement time increases, whereas the throughputs of the Multiclass Based Dynamic Priority algorithm increase with decreases in the increasing ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.