Enabled by a technology to fabricate well-defined nanogrates over a large area ͑2 ϫ 2 cm 2 ͒, we report the effect of such a surface, in both hydrophilic and hydrophobic conditions, on liquid slip and the corresponding friction reduction in microchannels. The grates are designed to be dense ͑ϳ230 nm pitch͒ but deep ͑ϳ500 nm͒ in order to sustain a large amount of air in the troughs when the grates are hydrophobic, even under pressurized liquid flow conditions ͑e.g., more than 1 bar͒. A noticeable slip ͑i.e., slip length of 100-200 nm, corresponding to 20%-30% reduction of pressure drop in a ϳ3 m high channel͒ is observed for water flowing parallel over the hydrophobic nanogrates; this is believed to be an "effective" slip generated by the nanostrips of air in the grate troughs under the liquid. The effective slip is clearer and larger in flows parallel to the nanograting patterns than in transverse, suggesting that the nanograted superhydrophobic surfaces would not only reduce friction in liquid flows under pressure but also enable directional control of the slip. This paper is the first to use nanoscale grating patterns and to measure their effect on liquid flows in microchannels.
We report nano-engineered surfaces (NanoTurf), designed to make various micro- and nano-fluidic devices and systems less frictional for liquid flows, and describe microchannels made with such a surface. While our group has reported a dramatic (> 95%) drag reduction of discrete droplets flowing in a space between two parallel-plates covered with “random” nano-posts created by the “black silicon method” [1], this paper describes various nanofabrication techniques, including those capable of “designing” nanostructures with not only a good control of pattern sizes and periods but also practical manufacturability to be embedded in various micro- and nano-fluidic devices and systems. Microchannels are developed using the designed nanostructure surfaces and used for continuous flow tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.