Cost effective hydrogen evolution reaction (HER) catalyst without using precious metallic elements is a crucial demand for environment-benign energy production. Molybdenum sulfide is one of the promising candidates for such purpose, particularly in acidic condition, but its catalytic performance is inherently limited by the sparse catalytic edge sites and poor electrical conductivity. We report synthesis and HER catalysis of hybrid catalysts composed of amorphous molybdenum sulfide (MoSx) layer directly bound at vertical N-doped carbon nanotube (NCNT) forest surface. Owing to the high wettability of N-doped graphitic surface and electrostatic attraction between thiomolybdate precursor anion and N-doped sites, ∼2 nm scale thick amorphous MoSx layers are specifically deposited at NCNT surface under low-temperature wet chemical process. The synergistic effect from the dense catalytic sites at amorphous MoSx surface and fluent charge transport along NCNT forest attains the excellent HER catalysis with onset overpotential as low as ∼75 mV and small potential of 110 mV for 10 mA/cm(2) current density, which is the highest HER activity of molybdenum sulfide-based catalyst ever reported thus far.
Particle accelerators driven by the interaction of ultraintense and ultrashort laser pulses with a plasma 1 can generate accelerating electric fields of several hundred gigavolts per metre and deliver high-quality electron beams with low energy spread 2-5 , low emittance 6 and up to 1 GeV peak energy 7,8 . Moreover, it is expected they may soon be able to produce bursts of electrons shorter than those produced by conventional particle accelerators, down to femtosecond durations and less. Here we present wide-band spectral measurements of coherent transition radiation which we use for temporal characterization. Our analysis shows that the electron beam, produced using controlled optical injection 9 , contains a temporal feature that can be identified as a 15 pC, 1.4-1.8 fs electron bunch (root mean square) leading to a peak current of 3-4 kA depending on the bunch shape. We anticipate that these results will have a strong impact on emerging applications such as short-pulse and short-wavelength radiation sources 10,11 , and will benefit the realization of laboratory-scale free-electron lasers 12-14 .The ponderomotive force generated by the focused laser pulse is proportional to the gradient of the laser intensity. It pushes electrons out of regions of high intensity and separates them from the ions, thus creating a plasma wave that propagates in the wake of the laser pulse with a phase velocity close to c, the speed of light in vacuum. The characteristic length of the accelerating cavity that forms behind the driving laser pulse is the plasma wavelength λ p . In a typical laser wakefield acceleration experiment, λ p = 10-30 µm for plasma densities n e = 10 18 -10 19 cm −3 . The electric field changes along the length of the plasma wave, therefore, to generate an electron beam with low energy spread and low divergence, the electron bunch should reside within the focusing and accelerating phase of the wave, which has a length λ p /4. These heuristic arguments indicate that one would expect the bunch duration to be ultrashort, τ < λ p /4c ≈ 10 fs (refs 9,15). However, to the best of our knowledge, such short durations have not previously been directly measured.Traditional techniques to measure the electron bunch duration, such as streak cameras and radio-frequency sweeping cavities, do not have the temporal resolution required for femtosecond bunches. Therefore, we have employed a method in the frequency domain and measured the coherent transition radiation (CTR) that is emitted by the electron bunch as it passes through a thin metallic foil. CTR is an established particle beam diagnostic and has been used to diagnose micro-structures of picosecond-bunches 16,17 and for benchmarking simulations of femtosecond-bunch dynamics
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.