Features derived from Multi-Layer Perceptrons (MLPs) are becoming increasingly popular for speech recognition. This paper describes various schemes for applying these features to state-of-the-art Arabic speech recognition: the use of MLP-features for short-vowel modelling in graphemic systems; rapid discriminative model training by standard PLP feature lattice re-use; and MLP feature adaptation using Linear Input Networks (LIN). The use of rapid training using MLP features and their use for short-vowel modelling and LIN adaptation gave reductions in word error rate. However significant improvements over explicit short-vowel modelling with standard multi-pass adaptation were not obtained, although they were useful in combination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.