Accurate and reliable prediction of the optical and photophysical properties of organic compounds is important in various research fields. Here, we developed deep learning (DL) optical spectroscopy using a DL model and experimental database to predict seven optical and photophysical properties of organic compounds, namely, the absorption peak position and bandwidth, extinction coefficient, emission peak position and bandwidth, photoluminescence quantum yield (PLQY), and emission lifetime. Our DL model included the chromophore–solvent interaction to account for the effect of local environments on the optical and photophysical properties of organic compounds and was trained using an experimental database of 30 094 chromophore/solvent combinations. Our DL optical spectroscopy made it possible to reliably and quickly predict the aforementioned properties of organic compounds in solution, gas phase, film, and powder with the root mean squared errors of 26.6 and 28.0 nm for absorption and emission peak positions, 603 and 532 cm –1 for absorption and emission bandwidths, and 0.209, 0.371, and 0.262 for the logarithm of the extinction coefficient, PLQY, and emission lifetime, respectively. Finally, we demonstrated how a blue emitter with desired optical and photophysical properties could be efficiently virtually screened and developed by DL optical spectroscopy. DL optical spectroscopy can be efficiently used for developing chromophores and fluorophores in various research areas.
Micropatterns with a high stability, definition, and resolution are an absolute requirement in advanced display technology. Herein, patternable perovskite nanocrystals (PNCs) with excellent stability were prepared by exchanging pristine ligands with multifunctional polymer ligands, poly(2-cinnamoyloxyethyl methacrylate). The polymer backbone contains a cinnamoyl group that has been widely employed as a photo-cross-linker under 365 nm UV irradiation. Also, the terminal group is readily adjustable among NH3Cl, NH3Br, and NH3I, allowing us to obtain multicolored PNCs via instant anion exchange. Furthermore, the resulting ligand exchanged PNCs exhibited enhanced stability toward polar solvents without any undesirable influence on the structural or optical properties of the PNCs. Using anion exchanged PNCs, RGB microarrays with a subpixel size of 10 μm × 40 μm were successfully demonstrated. Our results highlight the versatility and feasibility of a simplified patterning strategy for nanomaterials, which can be generally applied in the fabrication of various optoelectronic devices.
Interfacial chemistry at organic-inorganic contact critically determines the function of a wide range of molecular and organic electronic devices and other systems. The chemistry is, however, difficult to understand due to the lack of easily accessible in-operando spectroscopic techniques that permit access to interfacial structure on a molecular scale. Herein, we compare two analogous junctions formed with identical organic thin film and different liquid top-contacts (water droplet vs eutectic gallium indium alloy) and elucidate the puzzling interfacial characteristics. Specifically, we fine-tune the surface topography of the organic surface using mixed self-assembled monolayers (SAMs): single component SAM composed of rectifier (2,2'-bipyridyl-terminated n-undecanethiolate; denoted as SCBIPY) is systematically diluted with nonrectifying n-alkanethiolates of different lengths (denoted as SC where n = 8, 10, 12, 14, 16, 18). Characterization of the resulting mixed SAMs in wettability and tunneling currents with the two separate liquid top-contacts allows us to investigate the role of phase segregation and gauche defect in the SAM//liquid interfaces. The results reported here show the difference in length between SCBIPY and SC is translated into nanoscopic pits and gauche-conformer defects on the surface, and the difference in contact force-hydrostatic vs user pressures-and hence conformity of contact account for the difference in wettability and rectification behaviors. Our work provides an insight into the role of molecule-electrode interfacial defects in performance of molecular-scale electronic devices.
Experimental databases on the optical properties of organic chromophores are important for the implementation of data-driven chemistry using machine learning. Herein, we present a series of experimental data including various optical properties such as the first absorption and emission maximum wavelengths and their bandwidths (full width at half maximum), extinction coefficient, photoluminescence quantum yield, and fluorescence lifetime. A database of 20,236 data points was developed by collecting the optical properties of organic compounds already reported in the literature. A dataset of 7,016 unique organic chromophores in 365 solvents or in solid state is available in CSV format.
Tubular materials formed by self-assembly of small organic molecules find great utility in chemical and material science. Conventional tubular structures often lack stability because noncovalent molecular interactions are responsible for their conformational integrities. Herein we report the development of covalently linked chromogenic organic nanotubes which are prepared by using topochemical polymerization of self-assembled macrocyclic diacetylenes (MCDAs). Crystal structures of five MCDAs having different diameters were elucidated, and four of these substances were transformed to tubular polydiacetylenes (PDA) by UV-induced polymerization. Surprisingly, MCDA-1 was found to self-assemble in stacks with a tilt angle of 62.1°, which significantly deviates from the optimal value for polymerization of 45°. This observation suggests that geometric parameters derived using linear diacetylene (DA) models might not be strictly applicable to polymerization of MCDA systems. Blue-phase PDAs obtained by polymerization of MCDA-1 and MCDA-3 have different thermochromic and solvatochromic properties, which enable them to be utilized for colorimetric differentiation of aromatic solvents including isomeric xylenes. The observations made and information obtained in this study should enhance the understanding and design of stimulus-responsive rigid organic nanotubes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.