Objectives: To quantify reliability of three-dimensional skeletal landmarks and a comprehensive set of dental landmarks in cone-beam computed tomography (CBCT) and to determine the shapes of envelope of error. Materials and Methods: Three judges located 31 skeletal landmarks and 60 dental landmarks on the pre- and posttreatment CBCT images of 22 patients. Landmark error was determined by calculating the distance of deviation of landmark locations around their average. Standard deviation and mean radial spherical error were calculated. Scatterplots were constructed to characterize envelope of error. Results: The midline landmarks of the cranial base were highly reliable. Bilateral skeletal landmarks tended to have larger error than midline landmarks. Among the nonconventional landmarks, fronto-zygomatic suture, condyle, and mental foramen showed relatively high reliability. However, foramen spinosum and temporal fossa showed larger errors. Gonion was the least reliable landmark. Most dental landmarks were located more reliably than skeletal landmarks. The highest reliability was found at incisal edges. Mesiobuccal cusp of first molars also showed high reliability. Conclusions: There were differences in the size and shape of the distributions of errors of different landmarks. Most landmarks showed elongated envelopes. Bilateral structures tended to show greater errors than midline structures. Most dental landmarks were more reliable than skeletal landmarks.
Objective: To examine changes in the airway and cephalometric measurements associated with orthodontic treatment of adults with and without premolar extractions. The study investigated whether extractions had a direct or indirect effect on the airway and examined selected skeletal and dental features. Materials and Methods: This retrospective study used pre- (T1) and posttreatment (T2) cone-beam computed tomography scans of 83 adult patients matched for age and sex. A total of 15 airway and 10 skeletal and dental measures were analyzed by means of repeated-measures analysis of variance. Results: There were no results showing that extractions affected airway dimensions that could not be accounted for as reflections of measurement error. There was no evidence that extractions affected the airway indirectly through skeletal and dental changes. There were strong and consistent findings that patients with small airways showed larger ones after treatment and that patients with large airways showed smaller ones later. These effects were independent of whether or not extractions were part of treatment. The measurement phenomena of regression toward the mean and of differential unfolding of natural changes over time could have accounted for the results observed. Conclusions: There was no evidence that extractions in nongrowing patients have negative consequences on the size of various airway measures in the nasopharynx, retropalatal, or retroglossal regions.
Objectives To evaluate the accuracy and reliability of a fully automated landmark identification (ALI) system as a tool for automatic landmark location compared with human judges. Materials and Methods A total of 100 cone-beam computed tomography (CBCT) images were collected. After the calibration procedure, two human judges identified 53 landmarks in the x, y, and z coordinate planes on CBCTs using Checkpoint Software (Stratovan Corporation, Davis, Calif). The ground truth was created by averaging landmark coordinates identified by two human judges for each landmark. To evaluate the accuracy of ALI, the mean absolute error (mm) at the x, y, and z coordinates and mean error distance (mm) between the human landmark identification and the ALI were determined, and a successful detection rate was calculated. Results Overall, the ALI system was as successful at landmarking as the human judges. The ALI's mean absolute error for all coordinates was 1.57 mm on average. Across all three coordinate planes, 94% of the landmarks had a mean absolute error of less than 3 mm. The mean error distance for all 53 landmarks was 3.19 ± 2.6 mm. When applied to 53 landmarks on 100 CBCTs, the ALI system showed a 75% success rate in detecting landmarks within a 4-mm error distance range. Conclusions Overall, ALI showed clinically acceptable mean error distances except for a few landmarks. The ALI was more precise than humans when identifying landmarks on the same image at different times. This study demonstrates the promise of ALI in aiding orthodontists with landmark identifications on CBCTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.