We describe a method of mobile robot localization based on a rough map using stereo vision, which uses multiple visual features to detect and segment the buildings in the robot's field of view. The rough map is an inaccurate map with large uncertainties in the shapes, the dimensions and the locations of objects so that it can be built easily. The robot fuses odometry and vision information using extended Kalman filters to update the robot pose and the associated uncertainty based on the recognition of buildings in the map. We use multi-hypothesis Kalman filter to generate and track Gaussian pose hypotheses. An experimental result shows the feasibility of our localization method in an outdoor environment.
This paper discusses a sketch interface that can be used to guide a mobile robot along a specified path in its unfamiliar place. With the sketch interface, the user draws a rough map to give navigation tasks to robots. Because sketched maps often suffer from various inaccuracies and large errors in landmarks, we discuss what kinds of uncertainties in the rough maps would mainly have effects on navigating a robot. The effects of such inaccuracies on robot navigation are analyzed in simulated environments. A quantitative navigability measure of rough maps is then developed based on the analysis. Experimental results are also presented for validating the navigability measure.
We describe a method of mobile robot localization based on a rough map using stereo vision, which uses multiple visual features to detect and segment the buildings in the robot's field of view. The rough map is an inaccurate map with large uncertainties in the shapes, dimensions and locations of objects so that it can be built easily. The robot fuses odometry and vision information using extended Kalman filters to update the robot pose and the associated uncertainty based on the recognition of buildings in the map. We use a multi-hypothesis Kalman filter to generate and track Gaussian pose hypotheses. An experimental result shows the feasibility of our localization method in an outdoor environment.
Attention capability is an essential component of human–robot interaction. Several robot attention models have been proposed which aim to enable a robot to identify the attentiveness of the humans with which it communicates and gives them its attention accordingly. However, previous proposed models are often susceptible to noisy observations and result in the robot’s frequent and undesired shifts in attention. Furthermore, most approaches have difficulty adapting to change in the number of participants. To address these limitations, a novel attentiveness determination algorithm is proposed for determining the most attentive person, as well as prioritizing people based on attentiveness. The proposed algorithm, which is based on relevance theory, is named the Scalable Hidden Markov Model (Scalable HMM). The Scalable HMM allows effective computation and contributes an adaptation approach for human attentiveness; unlike conventional HMMs, Scalable HMM has a scalable number of states and observations and online adaptability for state transition probabilities, in terms of changes in the current number of states, i.e., the number of participants in a robot’s view. The proposed approach was successfully tested on image sequences (7567 frames) of individuals exhibiting a variety of actions (speaking, walking, turning head, and entering or leaving a robot’s view). From these experimental results, Scalable HMM showed a detection rate of 76% in determining the most attentive person and over 75% in prioritizing people’s attention with variation in the number of participants. Compared to recent attention approaches, Scalable HMM’s performance in people attention prioritization presents an approximately 20% improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.