Symmetric teleparallel gravity is constructed with a nonzero nonmetricity tensor while both torsion and curvature are vanishing. In this framework, we find exact scalarised spherically symmetric static solutions in scalar-tensor theories built with a nonminimal coupling between the nonmetricity scalar and a scalar field. It turns out that the Bocharova-Bronnikov-Melnikov-Bekenstein solution has a symmetric teleparallel analogue (in addition to the recently found metric teleparallel analogue), while some other of these solutions describe scalarised black hole configurations that are not known in the Riemannian or metric teleparallel scalar-tensor case. To aid the analysis we also derive no-hair theorems for the theory. Since the symmetric teleparallel scalar-tensor models also include f(Q) gravity, we shortly discuss this case and further prove a theorem which says that by imposing that the metric functions are the reciprocal of each other (grr = 1/gtt ), the f(Q) gravity theory reduces to the symmetric teleparallel equivalent of general relativity (plus a cosmological constant), and the metric takes the (Anti)de-Sitter-Schwarzschild form.
We construct global phase portraits of inflationary dynamics in teleparallel gravity models with a scalar field nonminimally coupled to torsion scalar. The adopted set of variables can clearly distinguish between different asymptotic states as fixed points, including the kinetic and inflationary regimes. The key role in the description of inflation is played by the heteroclinic orbits that run from the asymptotic saddle points to the late time attractor point and are approximated by nonminimal slow roll conditions. To seek the asymptotic fixed points, we outline a heuristic method in terms of the “effective potential” and “effective mass”, which can be applied for any nonminimally coupled theories. As particular examples, we study positive quadratic nonminimal couplings with quadratic and quartic potentials and note how the portraits differ qualitatively from the known scalar-curvature counterparts. For quadratic models, inflation can only occur at small nonminimal coupling to torsion, as for larger coupling, the asymptotic de Sitter saddle point disappears from the physical phase space. Teleparallel models with quartic potentials are not viable for inflation at all, since for small nonminimal coupling, the asymptotic saddle point exhibits weaker than exponential expansion, and for larger coupling, it also disappears.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.