We have developed a class of binding proteins, called avimers, to overcome the limitations of antibodies and other immunoglobulin-based therapeutic proteins. Avimers are evolved from a large family of human extracellular receptor domains by in vitro exon shuffling and phage display, generating multidomain proteins with binding and inhibitory properties. Linking multiple independent binding domains creates avidity and results in improved affinity and specificity compared with conventional single-epitope binding proteins. Other potential advantages over immunoglobulin domains include simple and efficient production of multitarget-specific molecules in Escherichia coli, improved thermostability and resistance to proteases. Avimers with sub-nM affinities were obtained against five targets. An avimer that inhibits interleukin 6 with 0.8 pM IC50 in cell-based assays is biologically active in two animal models.
Evolution of eukaryotes is mediated by sexual recombination of parental genomes. Crossovers occur in random, but homologous, positions at a frequency that depends on DNA length. As exons occupy only 1% of the human genome and introns about 24%, by far most of the crossovers occur between exons, rather than inside. The natural process of creating new combinations of exons by intronic recombination is called exon shuffling. Our group is developing in vitro formats for exon shuffling and applying these to the directed evolution of proteins. Based on the splice frame junctions, nine classes of exons and three classes of introns can be distinguished. Splice frame diagrams of natural genes show how the splice frame rules govern exon shuffling. Here, we review various approaches to constructing libraries of exon-shuffled genes. For example, exon shuffling of human pharmaceutical proteins can generate libraries in which all of the sequences are fully human, without the point mutations that raise concerns about immunogenicity.
Hepatocyte growth factor (HGF) and its receptor c-Met are associated with increased aggressiveness of tumors and poor prognostic outcome of patients with cancer. Here, we report the development and characterization of therapeutic anti-HGF (aHGF)-Nanobodies and their potential for positron emission tomographic (PET) imaging to assess HGF expression in vivo. Two aHGF-Nanobodies designated 1E2 and 6E10 were identified, characterized, and molecularly fused to an albumin-binding Nanobody unit (Alb8) to obtain serum half-life extension. The resulting Nanobody formats were radiolabeled with the positron emitter zirconium-89 ( 89 Zr, t1/ 2 ¼ 78 hours), administered to nude mice bearing U87 MG glioblastoma xenografts, and their biodistribution was assessed. In addition, their therapeutic effect was evaluated in the same animal model at doses of 10, 30, or 100 mg per mouse. The 89 Zr-Nanobodies showed similar biodistribution with selective tumor targeting. For example, 1E2-Alb8 showed decreased blood levels of 12.6%ID/g AE 0.6%ID/g, 7.2%ID/g AE 1.0%ID/g, 3.4%ID/g AE 0.3%ID/g, and 0.3%ID/g AE 0.1%ID/g at 1, 2, 3, and 7 days after injection, whereas tumor uptake levels remained relatively stable at these time points: 7.8%ID/g AE 1.1%ID/g, 8.9%ID/g AE 1.0%ID/g, 8.7%ID/g AE 1.5%ID/g, and 7.2%ID/g AE1.6%ID/g. Uptake in normal tissues was lower than in tumor, except for kidneys. In a therapy study, all Nanobody-treated mice showed tumor growth delay compared with the control saline group. In the 100-mg group, four of six mice were cured after treatment with 1E2-Alb8 and 73 days follow-up, and three of six mice when treated with 6E10-Alb8. These results provide evidence that Nanobodies 1E2-Alb8 and 6E10-Alb8 have potential for therapy and PET imaging of HGFexpressing tumors.
IntroductionThe pleiotropic cytokine interleukin-6 (IL-6) plays an important role in the pathogenesis of different diseases, including rheumatoid arthritis (RA). ALX-0061 is a bispecific Nanobody® with a high affinity and potency for IL-6 receptor (IL-6R), combined with an extended half-life by targeting human serum albumin. We describe here the relevant aspects of its in vitro and in vivo pharmacology.MethodsALX-0061 is composed of an affinity-matured IL-6R-targeting domain fused to an albumin-binding domain representing a minimized two-domain structure. A panel of different in vitro assays was used to characterize the biological activities of ALX-0061. The pharmacological properties of ALX-0061 were examined in cynomolgus monkeys, using plasma levels of total soluble (s)IL-6R as pharmacodynamic marker. Therapeutic effect was evaluated in a human IL-6-induced acute phase response model in the same species, and in a collagen-induced arthritis (CIA) model in rhesus monkeys, using tocilizumab as positive control.ResultsALX-0061 was designed to confer the desired pharmacological properties. A 200-fold increase of target affinity was obtained through affinity maturation of the parental domain. The high affinity for sIL-6R (0.19 pM) translated to a concentration-dependent and complete neutralization of sIL-6R in vitro. In cynomolgus monkeys, ALX-0061 showed a dose-dependent and complete inhibition of hIL-6-induced inflammatory parameters, including plasma levels of C-reactive protein (CRP), fibrinogen and platelets. An apparent plasma half-life of 6.6 days was observed after a single intravenous administration of 10 mg/kg ALX-0061 in cynomolgus monkeys, similar to the estimated expected half-life of serum albumin. ALX-0061 and tocilizumab demonstrated a marked decrease in serum CRP levels in a non-human primate CIA model. Clinical effect was confirmed in animals with active drug exposure throughout the study duration.ConclusionsALX-0061 represents a minimized bispecific biotherapeutic of 26 kDa, nearly six times smaller than monoclonal antibodies. High in vitro affinity and potency was demonstrated. Albumin binding as a half-life extension technology resulted in describable and expected pharmacokinetics. Strong IL-6R engagement was shown to translate to in vivo effect in non-human primates, demonstrated via biomarker deregulation as well as clinical effect. Presented results on preclinical pharmacological properties of ALX-0061 are supportive of clinical development in RA.Electronic supplementary materialThe online version of this article (doi:10.1186/s13075-015-0651-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.