Non-alcoholic fatty liver disease (NAFLD) affects one-third of the population worldwide, of which a substantial number of patients suffer from non-alcoholic steatohepatitis (NASH). NASH is a severe condition characterized by steatosis and concomitant liver inflammation and fibrosis, for which no drug is yet available. NAFLD is also generally conceived as the hepatic manifestation of the metabolic syndrome. Consequently, well-established drugs that are indicated for the treatment of type 2 diabetes and hyperlipidemia are thought to exert effects that alleviate the pathological features of NASH. One class of these drugs targets peroxisome proliferator-activated receptors (PPARs), which are nuclear receptors that play a regulatory role in lipid metabolism and inflammation. Therefore, PPARs are now also being investigated as potential anti-NASH druggable targets. In this paper, we review the mechanisms of action and physiological functions of PPARs and discuss the position of the different PPAR agonists in the therapeutic landscape of NASH. We particularly focus on the PPAR agonists currently under evaluation in clinical phase II and III trials. Preclinical strategies and how refinement and optimization may improve PPAR-targeted anti-NASH drug testing are also discussed. Finally, potential caveats related to PPAR agonism in anti-NASH therapy are stipulated.
Non-alcoholic steatohepatitis (NASH) is a chronic liver disease characterized by excessive triglyceride accumulation in the liver accompanied by inflammation, cell stress and apoptosis. It is the tipping point to the life-threatening stages of non-alcoholic fatty liver disease (NAFLD). Despite the high prevalence of NASH, up to five percent of the global population, there are currently no approved drugs to treat this disease. Animal models, mostly based on specific diets and genetic modifications, are often employed in anti-NASH drug development. However, due to interspecies differences and artificial pathogenic conditions, they do not represent the human situation accurately and are inadequate for testing the efficacy and safety of potential new drugs. Human-based in vitro models provide a more legitimate representation of the human NASH pathophysiology and can be used to investigate the dysregulation of cellular functions associated with the disease. Also in silico methodologies and pathway-based approaches using human datasets, may contribute to a more accurate representation of NASH, thereby facilitating the quest for new anti-NASH drugs. In this review, we describe the molecular components of NASH and how human-based tools can contribute to unraveling the pathogenesis of this disease and be used in anti-NASH drug development. We also propose a roadmap for the development and application of human-based approaches for future investigation of NASH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.