The field of electrochemical CO2 conversion is undergoing significant growth in terms of the number of publications and worldwide research groups involved. Despite improvements of the catalytic performance, the complex reaction mechanisms and solution chemistry of CO2 have resulted in a considerable amount of discrepancies between theoretical and experimental studies. A clear identification of the reaction mechanism and the catalytic sites are of key importance in order to allow for a qualitative breakthrough and, from an experimental perspective, calls for the use of in‐situ or operando spectroscopic techniques. In‐situ infrared spectroscopy can provide information on the nature of intermediate species and products in real time and, in some cases, with relatively high time resolution. In this contribution, we review key theoretical aspects of infrared reflection spectroscopy, followed by considerations of practical implementation. Finally, recent applications to the electrocatalytic reduction of CO2 are reviewed, including challenges associated with the detection of reaction intermediates.
Spark discharge generation was used to synthesize Mg-Ti nanocomposites consisting primarily of a metastable body-centered-cubic (bcc) alloy of Mg and Ti. The bcc Mg-Ti alloy transformed upon hydrogenation into the face-centered-cubic fluorite Mg1-yTiyHx phase with favorable hydrogen storage properties. Both metal and metal hydride nanocomposites showed a fractal-like porous morphology, with a primary particle size of 10-20 nm. The metal content of 70 atom % (at %) Mg and 30 at % Ti, consistently determined by XRD, TEM-EDS, and ICP-OES, was distributed uniformly across the as-prepared sample. Pressure-composition isotherms for the Mg-Ti-H nanocomposites revealed large differences in the thermodynamics relative to bulk MgH2, with a much less negative enthalpy of formation of the hydride as small as -45 ± 3 kJ/molH2 as deduced from van't Hoff plots. The plateau pressures of hydrogenation were substantially higher than those for bulk MgH2 in the low temperature range from 150 to 250 °C. The reaction entropy was simultaneously reduced to values down to 84 ± 5 J/K mol H2, following a linear relationship between the enthalpy and entropy. Plausible mechanisms for the modified thermodynamics are discussed, including the effect of lattice strains, the presence of interfaces and hydrogen vacancies, and the formation of excess free volume due to local deformations. These mechanisms all rely on the finely interdispersed nanocomposite character of the samples which is maintained by grain refinement.
A battolyser charges, generates hydrogen, or instantaneously discharges, enabling a remarkably durable, efficient, flexible and switchable electricity storage and conversion.
The electrochemical reduction of carbon dioxide (CO2) to value-added materials has received considerable attention. Both bulk transition metal catalysts, and molecular catalysts affixed to conductive non-catalytic solid supports, represents a promising approach towards electroreduction of CO2. Here, we report a combined silver (Ag) and pyridine catalyst through a green and irreversible electrografting process, which demonstrates enhanced CO2 conversion versus the individual counterparts. We find by tailoring the pyridine carbon chain length, a 200 mV shift in the onset potential is obtainable compared to the bare silver electrode. A 10-fold activity enhancement at -0.7 V vs RHE is then observed with demonstratable higher partial current densities for CO indicating a co-catalytic effect is attainable through the integration of the two different catalytic structures. We extended performance to a flow cell operating at 150 mA/cm 2 , demonstrating the approach's potential for substantial adaption with various transition metals as supports, and electrografted molecular co-catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.