CBF measured with 3D pseudocontinuous ASL MR imaging helps detect functional changes in the prodromal and more advanced stages of AD and is a marker for disease severity.
Cerebral microbleeds (CMBs), also referred to as microhemorrhages, appear on magnetic resonance (MR) images as hypointense foci notably at T2*-weighted or susceptibility-weighted (SW) imaging. CMBs are detected with increasing frequency because of the more widespread use of high magnetic field strength and of newer dedicated MR imaging techniques such as three-dimensional gradient-echo T2*-weighted and SW imaging. The imaging appearance of CMBs is mainly because of changes in local magnetic susceptibility and reflects the pathologic iron accumulation, most often in perivascular macrophages, because of vasculopathy. CMBs are depicted with a true-positive rate of 48%-89% at 1.5 T or 3.0 T and T2*-weighted or SW imaging across a wide range of diseases. False-positive "mimics" of CMBs occur at a rate of 11%-24% and include microdissections, microaneurysms, and microcalcifications; the latter can be differentiated by using phase images. Compared with postmortem histopathologic analysis, at least half of CMBs are missed with premortem clinical MR imaging. In general, CMB detection rate increases with field strength, with the use of three-dimensional sequences, and with postprocessing methods that use local perturbations of the MR phase to enhance T2* contrast. Because of the more widespread availability of high-field-strength MR imaging systems and growing use of SW imaging, CMBs are increasingly recognized in normal aging, and are even more common in various disorders such as Alzheimer dementia, cerebral amyloid angiopathy, stroke, and trauma. Rare causes include endocarditis, cerebral autosomal dominant arteriopathy with subcortical infarcts, leukoencephalopathy, and radiation therapy. The presence of CMBs in patients with stroke is increasingly recognized as a marker of worse outcome. Finally, guidelines for adjustment of anticoagulant therapy in patients with CMBs are under development. RSNA, 2018.
The relevance of cortical grey matter pathology in multiple sclerosis has become increasingly recognized over the past decade. Unfortunately, a large part of cortical lesions remain undetected on magnetic resonance imaging using standard field strength. In vivo studies have shown improved detection by using higher magnetic field strengths up to 7 T. So far, a systematic histopathological verification of ultra-high field magnetic resonance imaging pulse sequences has been lacking. The aim of this study was to determine the sensitivity of 7 T versus 3 T magnetic resonance imaging pulse sequences for the detection of cortical multiple sclerosis lesions by directly comparing them to histopathology. We obtained hemispheric coronally cut brain sections of 19 patients with multiple sclerosis and four control subjects after rapid autopsy and formalin fixation, and scanned them using 3 T and 7 T magnetic resonance imaging systems. Pulse sequences included T1-weighted, T2-weighted, fluid attenuated inversion recovery, double inversion recovery and T2*. Cortical lesions (type I-IV) were scored on all sequences by an experienced rater blinded to histopathology and clinical data. Staining was performed with antibodies against proteolipid protein and scored by a second reader blinded to magnetic resonance imaging and clinical data. Subsequently, magnetic resonance imaging images were matched to histopathology and sensitivity of pulse sequences was calculated. Additionally, a second unblinded (retrospective) scoring of magnetic resonance images was performed. Regardless of pulse sequence, 7 T magnetic resonance imaging detected more cortical lesions than 3 T. Fluid attenuated inversion recovery (7 T) detected 225% more cortical lesions than 3 T fluid attenuated inversion recovery (Z = 2.22, P < 0.05) and 7 T T2* detected 200% more cortical lesions than 3 T T2* (Z = 2.05, P < 0.05). Sensitivity of 7 T magnetic resonance imaging was influenced by cortical lesion type: 100% for type I (T2), 11% for type II (FLAIR/T2), 32% for type III (T2*), and 68% for type IV (T2). We conclude that ultra-high field 7 T magnetic resonance imaging more than doubles detection of cortical multiple sclerosis lesions, compared to 3 T magnetic resonance imaging. Unfortunately, (subpial) cortical pathology remains more extensive than 7 T magnetic resonance imaging can reveal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.