The scale, rate, and intensity of humans' environmental impact has engendered broad discussion about how to find plausible pathways of development that hold the most promise for fostering a better future in the Anthropocene. However, the dominance of dystopian visions of irreversible environmental degradation and societal collapse, along with overly optimistic utopias and business-as-usual scenarios that lack insight and innovation, frustrate progress. Here, we present a novel approach to thinking about the future that builds on experiences drawn from a diversity of practices, worldviews, values, and regions that could accelerate the adoption of pathways to transformative change (change that goes beyond incremental improvements). Using an analysis of 100 initiatives, or "seeds of a good Anthropocene", we find that emphasizing hopeful elements of existing practice offers the opportunity to: (1) understand the values and features that constitute a good Anthropocene, (2) determine the processes that lead to the emergence and growth of initiatives that fundamentally change human-environmental relationships, and (3) generate creative, bottom-up scenarios that feature well-articulated pathways toward a more positive future.
Future technologies and systemic innovation are critical for the profound transformation the food system needs. These innovations range from food production, land use and emissions, all the way to improved diets and waste management. Here, we identify these technologies, assess their readiness and propose eight action points that could accelerate the transition towards a more sustainable food system. We argue that the speed of innovation could be significantly increased with the appropriate incentives, regulations and social license. These, in turn, require constructive stakeholder dialogue and clear transition pathways. Main To date, the future sustainability of food systems, the role of changing diets, reducing waste and increasing agricultural productivity have been mainly studied through the lens of existing technologies. Regarding the latter, for example, a common research question concerns what level of yield gain could be achieved through new crop varieties, livestock breeds, animal feeds, or changes in farming practices and the diffusion of technologies such as irrigation and improved management 7-13. Yet, as studies have shown, even with wide adoption of existing agricultural technologies,
We present a framework for prioritizing adaptation approaches at a range of timeframes. The framework is illustrated by four case studies from developing countries, each with associated characterization of uncertainty. Two cases on near-term adaptation planning in Sri Lanka and on stakeholder scenario exercises in East Africa show how the relative utility of capacity vs. impact approaches to adaptation planning differ with level of uncertainty and associated lead time. An additional two cases demonstrate that it is possible to identify uncertainties that are relevant to decision making in specific timeframes and circumstances. The case on coffee in Latin America identifies altitudinal thresholds at which incremental vs. transformative adaptation pathways are robust options. The final case uses three crop-climate simulation studies to demonstrate how uncertainty can be characterized at different time horizons to discriminate where robust adaptation options are possible. We find that impact approaches, which use predictive models, are increasingly useful over longer lead times and at higher levels of greenhouse gas emissions. We also find that extreme events are important in determining predictability across a broad range of timescales. The results demonstrate the potential for robust knowledge and actions in the face of uncertainty.climate change | food security | vulnerability | future scenarios | policy A chieving food security under climate change is a complex public policy issue, a so-called "wicked problem." The magnitude of plausible impacts, and costs of inaction or delayed action, mean that individuals and societies must undertake adaptation actions despite uncertainty. Policymakers are accustomed to making decisions under considerable uncertainty and do not necessarily need systematic reductions in uncertainty to act on climate change (1). Nonetheless, science can make a major contribution by elucidating or prioritizing uncertainties in ways that are helpful to the decision-making processes of national policymakers and other stakeholders (2-4). The purpose of this article is to demonstrate how science can provide practical approaches to addressing uncertainty that can assist adaptation planning for agriculture in developing countries over multiple lead times. We achieve this goal by presenting four case studies linked by a framework that combines a simple uncertainty analysis with a characterization of different approaches to adaptation planning. Impact and Capacity Approaches to Adaptation PlanningAdaptation planning can incorporate scientific information both from projections of climatic impacts and assessments of adaptive capacity (Fig. 1). Impact approaches (5, 6) use statistical or mechanistic models to attach probabilities to possible outcomes under a range of scenarios; they arrive at adaptation options for agriculture and food security via analyses that start with climate forcings and global circulation models, and from these project progressive impacts on local climates, crop physiology, crop yi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.