The Asf+Sdf Meta-environment is an interactive development environment for the automatic generation of interactive systems for constructing language definitions and generating tools for them. Over the years, this system has been used in a variety of academic and commercial projects ranging from formal program manipulation to conversion of COBOL systems. Since the existing implementation of the Meta-environment started exhibiting more and more characteristics of a legacy system, we decided to build a completely new, component-based, version. We demonstrate this new system and stress its open architecture.
Control of the direction of motion is an essential feature of biological rotary motors and results from the intrinsic chirality of the amino acids from which the motors are made. In synthetic autonomous light-driven rotary motors, point chirality is transferred to helical chirality, and this governs their unidirectional rotation. However, achieving directional rotary motion in an achiral molecular system in an autonomous fashion remains a fundamental challenge. Here, we report an achiral molecular motor in which the presence of a pseudo-asymmetric carbon atom proved to be sufficient for exclusive autonomous disrotary motion of two appended rotor moieties. Isomerization around the two double bonds enables both rotors to move in the same direction with respect to their surroundings--like wheels on an axle--demonstrating that autonomous unidirectional rotary motion can be achieved in a symmetric system.
Modern quantum chemical electronic structure methods typically applied to localized chemical bonding are developed to predict atomic structures and free energies for meso-tetraalkylporphyrin self-assembled monolayer (SAM) polymorph formation from organic solution on highly ordered pyrolytic graphite surfaces. Large polymorphdependent dispersion-induced substrate−molecule interactions (e.g., −100 kcal mol −1 to −150 kcal mol −1 for tetratrisdecylporphyrin) are found to drive SAM formation, opposed nearly completely by large polymorph-dependent dispersion-induced solvent interactions (70-110 kcal mol −1 ) and entropy effects (25-40 kcal mol −1 at 298 K) favoring dissolution. Dielectric continuum models of the solvent are used, facilitating consideration of many possible SAM polymorphs, along with quantum mechanical/molecular mechanical and dispersion-corrected density functional theory calculations. These predict and interpret newly measured and existing high-resolution scanning tunnelling microscopy images of SAM structure, rationalizing polymorph formation conditions. A wide range of molecular condensed matter properties at room temperature now appear suitable for prediction and analysis using electronic structure calculations.self-assembled monolayers | density functional theory | dispersion | free energy | polymorphism A priori calculations of the free energies of chemical reactions using density functional theory (DFT) and/or ab initio methods are now well established for gas-phase processes (1, 2), gas surface reactions (3), and, using continuum self-consistent reaction field (SCRF) methods, for condensed phase processes also (4). Over the last few years, a major advance in computational methods has occurred, however, allowing for rapid and accurate evaluation of intermolecular dispersion interactions. This makes feasible similar SCRF calculations for physisorption, macromolecule structuring, and other self-assembly processes in condensed phases. We present the first application of this type, to our knowledge, considering the free energy of formation of various polymorphs of tetraalkylporphyrin self-assembled monolayers (SAMs) at solid/liquid interfaces on highly ordered pyrolytic graphite (HOPG) surfaces. Calculated structures and free energies are used to interpret new and existing high-resolution scanning tunneling microscopy (STM) images, focusing on the critical roles played by the dispersion interaction in driving SAM formation and by entropy and dispersion-based desolvation effects that oppose it.Calculating a priori free energies for SAM formation from solution is a significant challenge. Accurate representations of the substrate−molecule energies, the intermolecular energies, the solvent interaction energies, and the effects of solvent structure are required, a set of tasks that, with a few exceptions (see e.g., refs. 5 and 6), has remained prohibitive a priori. Alternatively, model calculations have been useful for identifying key qualitative features (7-11), whereas some full molecular dynamics si...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.