In this research, we explore the efficacy and potential of Generative AI models, specifically focusing on their application in role-playing simulations exemplified through Spyfall, a renowned mafia-style game. By leveraging GPT-4's advanced capabilities, the study aimed to showcase the model's potential in understanding, decision-making, and interaction during game scenarios. Comparative analyses between GPT-4 and its predecessor, GPT-3.5-turbo, demonstrated GPT-4's enhanced adaptability to the game environment, with significant improvements in posing relevant questions and forming human-like responses. However, challenges such as the model's limitations in bluffing and predicting opponent moves emerged. Reflections on game development, financial constraints, and non-verbal limitations of the study were also discussed. The findings suggest that while GPT-4 exhibits promising advancements over earlier models, there remains potential for further development, especially in instilling more 'human-like' attributes in AI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.