Objectives:This study is designed to analyze the penetration performance into ceiling materials containing asbestos of scattering prevention agents and investigate the change in penetration depth and viscosity according to the dilution rate of anti-scattering agents diluted with distilled water. Methods: Five different types of scattering prevention agents were spread on plate-type asbestos ceiling materials. The penetration depth of each coated ceiling material was measured by energy dispersive spectroscopy (EDS) analysis, based on X-ray fluorescence (XRF) results of the non-coated ceiling materials. Test equipment installed the ceiling materials and 60 minutes were collected at a flow rate of 10 ℓ/min at a filter of 25 mm. Results: An EDS analysis of the cross-section of ceiling materials constructed with a scattering prevention agent revealed that potassium is detected in the process of penetrating hardener solidification and this element could be an indicator for infiltration. When anti-scattering agents with different viscosities were constructed and the penetration depth was analyzed by potassium detection assessment using EDS, the depth results with viscosities of 5.0, 2.5, and 1.9 cP were 98.5, 103, and 147 μm, respectively. Penetration performance improved with decrease in viscosity. Conclusions: For asbestos ceiling materials, it is concluded that a higher dilution rate of the scattering prevention agent leads to lower viscosity, and hence a deeper penetration depth from 156 ㎛ to 3 mm. The asbestos anti-scattering properties according to the penetration depth will be confirmed through further study.
The doping effect of (Na0.5K0.5)NbO3 (NKN) as alternatives for rare-earth elements on the electrical properties of BaTiO3 has been investigated, in terms of their substitution behavior. The dielectric constant of a specimen with x = 0.05 was about 79% higher than that of pure BaTiO3, and the temperature coefficient of capacitance was satisfied by the X7R specification. The specimen with x = 0.05 showed the lowest tetragonality among the four compositions and had a fine grain size of <2 μm. Although the addition of NKN decreased the specimen's tetragonality, the electrical properties were enhanced by the formation of defect dipoles and conduction electrons, which resulted from an acceptor and donor substitution behavior. Through O K-edge near edge x-ray absorption fine structure spectroscopy, the practical substitution behavior was defined by the change in Ti 3d orbital states. The energy separation of the Ti 3d orbitals was more apparent with the specimen of x = 0.05, which is related to the donor level from the donor substitution of Nb5+ ion for Ti-sites. Therefore, the simultaneous substitution of Na+/K+ and Nb5+ ions into BaTiO3 can improve dielectric properties, based on the charge-transfer process.
Conductive oxides are widely studied as cathode materials for electrochemical cells, such as solid oxide fuel cells (SOFCs), because of their chemical stability and high electrical conductivity at high temperatures (800–950 °C). The cathode is a key component of SOFCs, accounting for the greatest resistance loss among the SOFC components. It is important to precisely determine the conductivity of the cathode material, but it is difficult to achieve consistency among measurements because of errors caused by differences in the measurement methods and conditions employed by various research teams. In this study, the total electrical conductivity of an SOFC cathode material was measured by the DC 4-point method by investigating the geometrical parameters of the sample and the measurement terminal and the measurement device using La0.8Sr0.2MnO3+d (LSM). The measurement variables included the spacing between the measurement terminals (1 and 2 cm), lead wire diameter (0.25 and 0.5 mm), specimen thickness (3, 4, and 5 mm), and the applied current (10, 50, and 100 mA). The larger the spacing between the measurement terminal and the thinner the specimen, the smaller the standard deviation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.