Brandão and Svore \cite{brandao2016QSDPSpeedup} recently gave quantum algorithms for approximately solving semidefinite programs, which in some regimes are faster than the best-possible classical algorithms in terms of the dimension n of the problem and the number m of constraints, but worse in terms of various other parameters. In this paper we improve their algorithms in several ways, getting better dependence on those other parameters. To this end we develop new techniques for quantum algorithms, for instance a general way to efficiently implement smooth functions of sparse Hamiltonians, and a generalized minimum-finding procedure.We also show limits on this approach to quantum SDP-solvers, for instance for combinatorial optimization problems that have a lot of symmetry. Finally, we prove some general lower bounds showing that in the worst case, the complexity of every quantum LP-solver (and hence also SDP-solver) has to scale linearly with mn when m≈n, which is the same as classical.
Brandão and Svore [BS16] recently gave quantum algorithms for approximately solving semidefinite programs, which in some regimes are faster than the best-possible classical algorithms in terms of the dimension n of the problem and the number m of constraints, but worse in terms of various other parameters. In this paper we improve their algorithms in several ways, getting better dependence on those other parameters. To this end we develop new techniques for quantum algorithms, for instance a general way to efficiently implement smooth functions of sparse Hamiltonians, and a generalized minimum-finding procedure.We also show limits on this approach to quantum SDP-solvers, for instance for combinatorial optimizations problems that have a lot of symmetry. Finally, we prove some general lower bounds showing that in the worst case, the complexity of every quantum LP-solver (and hence also SDP-solver) has to scale linearly with mn when m ≈ n, which is the same as classical. *
We study to what extent quantum algorithms can speed up solving convex optimization problems. Following the classical literature we assume access to a convex set via various oracles, and we examine the efficiency of reductions between the different oracles. In particular, we show how a separation oracle can be implemented using O(1) quantum queries to a membership oracle, which is an exponential quantum speed-up over the Ω(n) membership queries that are needed classically. We show that a quantum computer can very efficiently compute an approximate subgradient of a convex Lipschitz function. Combining this with a simplification of recent classical work of Lee, Sidford, and Vempala gives our efficient separation oracle. This in turn implies, via a known algorithm, that O(n) quantum queries to a membership oracle suffice to implement an optimization oracle (the best known classical upper bound on the number of membership queries is quadratic). We also prove several lower bounds: Ω( √ n) quantum separation (or membership) queries are needed for optimization if the algorithm knows an interior point of the convex set, and Ω(n) quantum separation queries are needed if it does not. * We use [n] := {1, 2, . . . , n}. For p ≥ 1, ε ≥ 0, and a set C ⊆ R n we let B p (C, ε) = {x ∈ R n : ∃y ∈ C such that ||x − y|| p ≤ ε} be the set of points of distance at most ε from C in the p -norm. When C = {x} is a singleton set we abuse notation and write B p (x, ε). We overload notation by setting B p (C, −ε) = {x ∈ R n : B p (x, ε) ⊆ C}.Whenever p is omitted it is assumed that p = 2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.