We present a biologically inspired approach to traffic sign detection based on Virtual Generalizing Random Access Memory Weightless Neural Networks (VG-RAM WNN). VG-RAM WNN are effective machine learning tools that offer simple implementation and fast training and test. Our VG-RAM WNN architecture models the saccadic eye movement system and the transformations suffered by the images captured by the eyes from the retina to the superior colliculus in the mammalian brain. We evaluated the performance of our VG-RAM WNN system on traffic sign detection using the German Traffic Sign Detection Benchmark (GTSDB). Using only 12 traffic sign images for training, our system was ranked between the first 16 methods for the prohibitory category in the German Traffic Sign Detection Competition, part of the IJCNN'2013. Our experimental results showed that our approach is capable of reliably and efficiently detect a large variety of traffic sign categories using a few training samples.
This is the accepted version of the paper.This version of the publication may differ from the final published version. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Permanent repository link
AbstractThe Virtual Generalizing Random Access Memory Weightless Neural Network (VG-RAM WNN) is a type of WNN that only requires storage capacity proportional to the training set. As such, it is an effective machine learning technique that offers simple implementation and fast training -it can be made in one shot. However, the VG-RAM WNN test time for applications that require many training samples can be large, since it increases with the size of the memory of each neuron. In this paper, we present Fat-Fast VG-RAM WNNs. Fat-Fast VG-RAM WNNs employ multi-index chained hashing for fast neuron memory search. Our chained hashing technique increases the VG-RAM memory consumption (fat) but reduces test time substantially (fast), while keeping most of its machine learning performance. To address the memory consumption problem, we employ a data clustering technique to reduce the overall size of the neurons' memory. This can be achieved by replacing clusters of neurons' memory by their respective centroid values. With our approach, we were able to reduce VG-RAM WNN test time and memory footprint, while maintaining a high and acceptable machine learning performance. We performed experiments with the Fat-Fast VG-RAM WNN applied to two recognition problems: (i) handwritten digit recognition, and (ii) traffic sign recognition. Our experimental results showed that, in both recognition problems, our new VG-RAM WNN approach was able to run three orders of magnitude faster and consume two orders of magnitude less memory than standard VG-RAM, while experiencing only a small reduction in recognition performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.