Although epidermal growth factor receptor (EGFR; also called ErbB1) and its relatives initiate one of the most well-studied signalling networks, there is not yet a genome-wide view of even the earliest step in this pathway: recruitment of proteins to the activated receptors. Here we use protein microarrays comprising virtually every Src homology 2 (SH2) and phosphotyrosine binding (PTB) domain encoded in the human genome to measure the equilibrium dissociation constant of each domain for 61 peptides representing physiological sites of tyrosine phosphorylation on the four ErbB receptors. This involved 77,592 independent biochemical measurements and provided a quantitative protein interaction network that reveals many new interactions, including ones that fall outside of our current view of domain selectivity. By slicing through the network at different affinity thresholds, we found surprising differences between the receptors. Most notably, EGFR and ErbB2 become markedly more promiscuous as the threshold is lowered, whereas ErbB3 does not. Because EGFR and ErbB2 are overexpressed in many human cancers, our results suggest that the extent to which promiscuity changes with protein concentration may contribute to the oncogenic potential of receptor tyrosine kinases, and perhaps other signalling proteins as well.
Immune cells promote the initial metastatic dissemination of carcinoma cells from primary tumors. In contrast to their well-studied functions in the initial stages of metastasis, the specific roles of immunocytes in facilitating progression through the critical later steps of the invasion-metastasis cascade remain poorly understood. Here we define novel functions of neutrophils in promoting intraluminal survival and extravasation at sites of metastatic dissemination. We show that CD11b+/Ly6G+ neutrophils enhance metastasis formation via two distinct mechanisms. First, neutrophils inhibit natural killer cell function, which leads to a significant increase in the intraluminal survival time of tumor cells. Thereafter, neutrophils operate to facilitate extravasation of tumor cells through the secretion of IL-1β and matrix metalloproteinases. These results identify neutrophils as key regulators of intraluminal survival and extravasation through their crosstalk with host cells and disseminating carcinoma cells.
SUMMARY
The epithelial-mesenchymal transition program becomes activated during malignant progression and can enrich for cancer stem cells (CSCs). We report that inhibition of protein kinase C α (PKCα) specifically targets CSCs, but has little effect on non-CSCs. The formation of CSCs from non-stem cells involves a shift from EGFR to PDGFR signaling, and results in the PKCα-dependent activation of FRA1. We identified an AP-1 molecular switch in which c-FOS and FRA1 are preferentially utilized in non-CSCs and CSCs, respectively. PKCα and FRA1 expression is associated with the aggressive triple-negative breast cancers and the depletion of FRA1 results in a mesenchymal-epithelial transition. Hence, identifying molecular features that shift between cell states can be exploited to target signaling components critical to CSCs.
Patients undergoing surgical resection of primary breast tumors confront a risk for metastatic recurrence that peaks sharply 12 to 18 months after surgery. The cause of early metastatic relapse in breast cancer has long been debated, with many ascribing these relapses to the natural progression of the disease. Others have proposed that some aspect of surgical tumor resection triggers the outgrowth of otherwise-dormant metastases, leading to the synchronous pattern of relapse. Clinical data cannot distinguish between these hypotheses, and previous experimental approaches have not provided clear answers. Such uncertainty hinders the development and application of therapeutic approaches that could potentially reduce early metastatic relapse. We describe an experimental model system that definitively links surgery and the subsequent wound-healing response to the outgrowth of tumor cells at distant anatomical sites. Specifically, we find that the systemic inflammatory response induced after surgery promotes the emergence of tumors whose growth was otherwise restricted by a tumor-specific T cell response. Furthermore, we demonstrate that perioperative anti-inflammatory treatment markedly reduces tumor outgrowth in this model, suggesting that similar approaches might substantially reduce early metastatic recurrence in breast cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.