Aerobic exercise can serve as an alternative, non-drug reinforcer in laboratory animals and has been recommended as a potential intervention for substance abusing populations. Unfortunately, relatively little empirical data have been collected that specifically address the possible protective effects of voluntary, long-term exercise on measures of drug self-administration. The purpose of the present study was to examine the effects of chronic exercise on sensitivity to the positive-reinforcing effects of cocaine in the drug self-administration procedure. Female rats were obtained at weaning and immediately divided into two groups. Sedentary rats were housed individually in standard laboratory cages that permitted no exercise beyond normal cage ambulation; exercising rats were housed individually in modified cages equipped with a running wheel. After 6 weeks under these conditions, rats were surgically implanted with venous catheters and trained to self-administer cocaine on a fixedratio schedule of reinforcement. Once self-administration was acquired, cocaine was made available on a progressive ratio schedule and breakpoints were obtained for various doses of cocaine. Sedentary and exercising rats did not differ in the time to acquire cocaine self-administration or responding on the fixed-ratio schedule of reinforcement. However, on the progressive ratio schedule, breakpoints were significantly lower in exercising rats than sedentary rats when responding was maintained by both low (0.3 mg/kg/infusion) and high (1.0 mg/kg/infusion) doses of cocaine. In exercising rats, greater exercise output prior to catheter implantation was associated with lower breakpoints at the high dose of cocaine. These data indicate that chronic exercise decreases the positive-reinforcing effects of cocaine and support the possibility that exercise may be an effective intervention in drug abuse prevention and treatment programs.
Environmental enrichment produces functional changes in mesolimbic dopamine transmission and alters sensitivity to psychomotor stimulants. These manipulations also alter the control rate of many behaviors that are sensitive to stimulant administration, which can make comparison of drug effects between isolated and enriched subjects difficult. The purpose of this study was to examine the effects of environmental enrichment on control rates of behavior and on sensitivity to cocaine in tests of locomotor activity, drug self-administration, conditioned place preference, and toxicity. In the locomotor activity test, isolated rats exhibited greater activity after the administration of cocaine, but also had higher control rates of activity. When locomotor activity was expressed as a percentage of saline control values, enriched rats exhibited a greater increase relative to their own control than isolated rats. In the drug self-administration procedure, isolated rats had higher breakpoints on a progressive-ratio schedule of reinforcement when responding was maintained by cocaine; however, isolated rats also had higher breakpoints in saline substitution tests and higher rates of inactive lever responding. When the self-administration data were expressed as a percentage of these control values, enriched rats exhibited a greater increase in responding relative to their own control rates than isolated rats. No differences were observed between isolated and enriched rats under control conditions in the place preference and toxicity studies. In both of these procedures, enriched rats were more sensitive than isolated rats to all the doses of cocaine tested. These data emphasize the importance of considering control rates of behavior in studies examining environmental enrichment and drug sensitivity, and suggest that environmental enrichment increases sensitivity to cocaine across a range of dependent measures whether differences in control rates of behavior are taken into account.
Repeated administration of many addictive drugs leads to a progressive increase in their locomotor effects. This increase in locomotor activity often develops concomitantly with increases in their positive-reinforcing effects, which are believed to contribute to the etiology of substance use disorders. The purpose of this study was to examine changes in sensitivity to the locomotor effects of opioids after their repeated administration and to determine the role of and receptors in mediating these effects. Separate groups of rats were treated with opioid receptor agonists and antagonists every other day for 10 days, and changes in locomotor activity were measured. Repeated administration of the agonists, morphine and buprenorphine, produced a progressive increase in locomotor activity during the treatment period, and this effect was blocked by coadministration of the opioid antagonist naltrexone. The agonist spiradoline decreased locomotor activity when administered alone and blocked the progressive increase in locomotor activity produced by morphine. The ability of spiradoline to block morphine-induced increases in locomotor activity was itself blocked by pretreatment with the antagonist nor-binaltorphimine. Repeated administration of high doses, but not low or moderate doses, of the mixed / agonists butorphanol, nalbuphine, and nalorphine produced a progressive increase in locomotor activity during the treatment period. Doses of butorphanol, nalbuphine, and nalorphine that failed to produce a progressive increase in locomotor activity when administered alone did so when subjects were pretreated with nor-binaltorphimine. These findings suggest that and receptors have functionally opposing effects on opioid-mediated locomotor activity and sensitization-related processes.Locomotor activity after psychotropic drug administration has long been of interest to behavioral pharmacologists in general and substance abuse researchers in particular. The reasons for this interest can be traced to the fact that the anatomical structures and neurotransmitter systems mediating locomotor activity overlap those that mediate positive reinforcement and reward (for review, see Wise, 1987;Tzschentke, 2001). Because of this overlap, a careful examination of locomotor activity after drug administration can shed light on the neuropharmacological basis of substance abuse and other addictive behaviors.Opioid analgesics produce a stereotypical pattern of locomotor activity that has been well characterized. After systemic administration, -opioid agonists initially produce a transient decrease in locomotor activity that gradually dissipates over the course of 60 to 120 min, which is then followed by an increase in locomotor activity lasting several hours (Babbini and Davis, 1972;Buxbaum et al., 1973). Sensitivity to both the initial decrease and the subsequent increase in locomotor activity changes after the repeated administration of opioids, such that the initial decrease becomes gradually smaller, and the subsequent increase becom...
Sensitization refers to an increase in sensitivity to a drug and is believed to play a role in the etiology of substance use disorders. The purpose of the present study was to evaluate the ability of the mixed mu/kappa agonist nalbuphine to modulate sensitization to the locomotor and positive reinforcing effects of cocaine. Rats were habituated to a locomotor activity chamber and treated with saline (1.0 ml/kg, ip), cocaine (10 mg/kg, ip), or cocaine + nalbuphine (10 mg/kg, ip) every day for 10 days. Following locomotor activity testing, rats were implanted with intravenous catheters and cocaine self-administration was examined on fixed ratio (FR) and progressive ratio (PR) schedules of reinforcement. Rats treated with cocaine exhibited a progressive increase in locomotor activity over the 10-day treatment period, and this effect was significantly reduced in rats treated with cocaine + nalbuphine. In self-administration tests, rats treated with cocaine exhibited significantly higher levels of responding at a threshold dose of cocaine (0.03 mg/kg/infusion) on both FR and PR schedules than rats treated with saline. This increase in responding at a threshold dose of cocaine was blocked completely in rats treated with cocaine + nalbuphine. These data suggest that nalbuphine attenuates the development of sensitization to the behavioral effects of cocaine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.