Repeated use of field corn (Zea mays L.) hybrids expressing the Cry3Bb1 and mCry3A traits in Nebraska has selected for field-evolved resistance in some western corn rootworm (WCR; Diabrotica virgifera virgifera LeConte) populations. Therefore, this study was conducted to characterize spatial variation in local WCR susceptibility to Cry3Bb1 and mCry3A traits in Keith and Buffalo counties, Nebraska, and determine the relationship between past management practices and current WCR susceptibility. Adult WCR populations were collected from sampling grids during 2015 and 2016 and single-plant larval bioassays conducted with F1 progeny documented significant variation in WCR susceptibility to Cry3Bb1 and mCry3A on different spatial scales in both sampling grids. At the local level, results revealed that neighboring cornfields may support WCR populations with very different susceptibility levels, indicating that gene flow of resistant alleles from high trait survival sites is not inundating large areas. A field history index, comprised of additive and weighted variables including past WCR management tactics and agronomic practices, was developed to quantify relative selection pressure in individual fields. The field history index-Cry3 trait survivorship relationship from year 1 data was highly predictive of year 2 Cry3 trait survivorship when year 2 field history indices were inserted into the year 1 base model. Sensitivity analyses indicated years of trait use and associated selection pressure at the local level were the key drivers of WCR susceptibility to Cry3 traits in this system. Retrospective case histories from this study will inform development of optimal resistance management programs and increase understanding of plant-insect interactions that may occur when transgenic corn is deployed in the landscape. Results from this study also support current recommendations to slow or mitigate the evolution of resistance by using a multi-tactic approach to manage WCR densities in individual fields within an integrated pest management framework.
BACKGROUND Western corn rootworm (WCR; Diabrotica virgifera virgifera) field‐evolved resistance to transgenic maize expressing the Cry3Bb1 protein derived from Bacillus thuringiensis (Bt) has been confirmed across the United States Corn Belt. Although use of pyramided hybrids expressing Cry3Bb1 + Cry34/35Ab1 has increased in recent years to mitigate existing WCR Bt resistance, susceptibility of Nebraska WCR populations to this rootworm–Bt pyramid has not been assessed. Plant‐based bioassays were used to characterize the susceptibility of WCR populations to Cry3Bb1 and Cry3Bb1 + Cry34/35Ab1 maize. Populations were collected from areas of northeastern Nebraska with a history of planting Bt maize that expressed Cry3Bb1 and Cry34/35Ab1. RESULTS Significant differences in mean corrected survival among populations within Bt hybrids indicated a mosaic of WCR susceptibility to Cry3Bb1 + Cry34/35Ab1 and Cry3Bb1 maize occurred in the landscape. All field populations exhibited some level of resistance to one or both Bt hybrids when compared to susceptible laboratory control populations in bioassays. Most WCR populations exhibited incomplete resistance to Cry3Bb1 + Cry34/35Ab1 maize (92%) and complete resistance to Cry3Bb1 maize (79%). CONCLUSION The present study confirms the first cases of field‐evolved resistance to Cry3Bb1 + Cry34/35Ab1 maize in Nebraska and documents a landscape‐wide WCR Cry3Bb1 resistance pattern in areas characterized by long‐term continuous maize production and associated planting of Cry3Bb1 hybrids. Use of a multi‐tactic integrated pest management approach is needed in areas of continuous maize production to slow or mitigate resistance evolution to Bt maize. © 2021 Society of Chemical Industry.
The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is considered one of the most economically important pests of maize (Zea mays L.) in the United States (U.S.) Corn Belt with costs of management and yield losses exceeding USD ~1–2 billion annually. WCR management has proven challenging given the ability of this insect to evolve resistance to multiple management strategies including synthetic insecticides, cultural practices, and plant-incorporated protectants, generating a constant need to develop new management tools. One of the most recent developments is maize expressing double-stranded hairpin RNA structures targeting housekeeping genes, which triggers an RNA interference (RNAi) response and eventually leads to insect death. Following the first description of in planta RNAi in 2007, traits targeting multiple genes have been explored. In June 2017, the U.S. Environmental Protection Agency approved the first in planta RNAi product against insects for commercial use. This product expresses a dsRNA targeting the WCR snf7 gene in combination with Bt proteins (Cry3Bb1 and Cry34Ab1/Cry35Ab1) to improve trait durability and will be introduced for commercial use in 2022.
The western corn rootworm (WCR; Diabrotica virgifera virgifera LeConte) is a significant pest of maize (Zea mays L.) across the United States Corn Belt. Transgenic maize hybrids expressing insecticidal proteins derived from Bacillus thuringiensis (Bt) have been used to manage WCR since 2003. Widespread resistance to Cry3Bb1 (and associated cross-resistance to mCry3A and eCry3.1Ab) has placed increased selection pressure on Cry34/35Ab1 in single-protein and pyramided transgenic maize hybrids. Data on the susceptibility of Nebraska WCR populations to Cry34/35Ab1 has not been published since 2015 and plant-based bioassays conducted in 2017–2018 confirmed resistance to Cry3Bb1 + Cry34/35Ab1 maize, suggesting resistance to Cry34/35Ab1 has evolved in the Nebraska landscape. Therefore, plant-based bioassays were conducted on F1 progeny of WCR populations collected from northeast Nebraska in 2018 and 2019. Larval survival and development were used to classify resistance to Cry34/35Ab1 in each WCR population. Bioassays confirmed incomplete resistance to Cry34/35Ab1 maize in 21 of 30 WCR populations; 9 of 30 WCR populations remained susceptible to Cry34/35Ab1. Collectively, results indicate that northeast Nebraska WCR populations were in the initial stages of resistance evolution to Cry34/35Ab1 during 2018–2019. Appropriate resistance management strategies are needed to mitigate resistance and preserve efficacy of rootworm-active products containing Cry34/35Ab1.
The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a significant pest of field corn, Zea mays L. (Poales: Poaceae), across the United States Corn Belt. Widespread adoption and continuous use of corn hybrids expressing the Cry3Bb1 protein to manage the western corn rootworm has resulted in greater than expected injury to Cry3Bb1-expressing hybrids in multiple areas of Nebraska. Single-plant bioassays were conducted on larval western corn rootworm populations to determine the level of resistance present in various Nebraska counties. The results confirmed a mosaic of susceptibility to Cry3Bb1 across Nebraska. Larval development metrics, including head capsule width and fresh weight, were measured to quantify the relationship between the level of resistance to Cry3Bb1 and larval developmental rate. Regression and correlation analyses indicate a significant positive relationship between Cry3Bb1 corrected survival and both larval development metrics. Results indicate that as the level of resistance to Cry3Bb1 within field populations increases, mean head capsule width and larval fresh weight also increase. This increases our understanding of western corn rootworm population dynamics and age structure variability present in the transgenic landscape that is part of the complex interaction of factors that drives resistance evolution. This collective variability and complexity within the landscape reinforces the importance of making corn rootworm management decisions based on information collected at the local level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.