Iron Hopping
Iron oxide minerals shuttle electrons around in a wide range of biogeochemical processes.
Katz
et al.
(p.
1200
) used time-resolved x-ray absorption spectroscopy to take a closer look at how this happens. By using photoionized surface dyes to inject electrons into three different solid oxide phases, they found that electrons hop among iron centers at rates that depend more on structure in their immediate vicinity than on the extended ordering of the crystal lattice. These observations bolster the prevailing small polaron model in which charge carriers associate closely with individual metal sites.
A high-throughput method has been developed using a commercial piezoelectric inkjet printer for synthesis and characterization of mixed-metal oxide photoelectrode materials for water splitting. The printer was used to deposit metal nitrate solutions onto a conductive glass substrate. The deposited metal nitrate solutions were then pyrolyzed to yield mixed-metal oxides that contained up to eight distinct metals. The stoichiometry of the metal oxides was controlled quantitatively, allowing for the creation of vast libraries of novel materials. Automated methods were developed to measure the opencircuit potentials (E oc ), short-circuit photocurrent densities (J sc ), and current density vs. applied potential (J-E) behavior under visible light irradiation. The high-throughput measurement of E oc is particularly significant because open-circuit potential measurements allow the interfacial energetics to be probed regardless of whether the band edges of the materials of concern are above, close to, or below the values needed to sustain water electrolysis under standard conditions. The E oc measurements allow high-throughput compilation of a suite of data that can be associated with the composition of the various materials in the library, to thereby aid in the development of additional screens and to form a basis for development of theoretical guidance in the prediction of additional potentially promising photoelectrode compositions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.