Pulsed neutron capture (PNC) logs are commonly used for formation evaluation behind casing and to assess time-lapse variations of hydrocarbon pore volume. Because conventional interpretation methods for Σ logs assume homogeneous formations, errors may arise, especially in thinly bedded formations, when appraising petrophysical properties of hydrocarbon-bearing beds. There exist no quantitative interpretation methods to account for shoulder-bed effects on Σ logs acquired in sand-shale laminated reservoirs. Because of diffusion effects between dissimilar beds, Σ logs acquired in such formations do not obey mixing laws between the Σ responses of pure-sand and pure-shale end members of the sedimentary sequence. We have developed a new numerical method to simulate PNC rapidly and accurately logs. The method makes use of late-time, thermal-neutron flux sensitivity functions (FSFs) to describe the contribution of multilayer formations toward the measured capture cross section. It includes a correction procedure based on 1D neutron diffusion theory that adapts the transport-equation-derived, base-case FSF of a homogeneous formation to simulate the response of vertically heterogeneous formations. Benchmarking exercises indicate that our simulation method yields average differences smaller than two capture units within seconds of computer central processing unit time with respect to PNC logs simulated with rigorous Monte Carlo methods for a wide range of geometrical, petrophysical, and fluid properties.
We have developed an inversion method to reduce shoulder-bed effects on pulsed neutron capture (PNC) logs for estimating layer-by-layer-capture cross sections Σ. The method is based on a previously developed rapid approximation of PNC logs. Tests performed on synthetic examples that include a variety of lithology, saturating-fluid, and bed-thickness configurations confirm the efficiency, reliability, and stability of the inversion procedure. Inversion consistently improves the vertical resolution and Σ definition of PNC logs across beds thinner than 45 cm. Our fast, iterative algorithm inverts Σ logs in seconds of CPU time and is therefore suitable for joint petrophysical interpretation with other open- and cased-hole logs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.